
                                                               CN 10-1014/TP 

                                          ISSN 2095-2228 

 

Frontiers of Computer Science

https://doi.org/10.1007/s11704-020-9420-6

RESEARCH ARTICLE 

  

 

 

    

 

 
 

 
 

 

 

    

  

  

  

 

 

      
 

                         

            
             

  

 
           

             

Nested Relation Extraction with Iterative Neural  Network

Yixuan CAO1,2, Dian CHEN1,2, Zhengqi XU1,2, Hongwei LI1,2, Ping LUO1,2

1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences(CAS), Institute of 
Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

 
 
 

 Front. Comput. Sci., Just Accepted Manuscript • 10.1007/s11704-020-9420-6 

.cn.com.hepournal/jp:/htt on charM  27 , 2020  
 

 
© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 

 

 

 

Just Accepted 

This is a “Just Accepted” manuscript, which has been examined by the peer-review process and 
has been accepted for publication. A “Just Accepted” manuscript is published online shortly 
after its acceptance, which is prior to technical editing and formatting and author proofing. 

Higher Education Press (HEP) provides “Just Accepted” as an optional and free service which 
allows authors to make their results available to the research community as soon as possible 
after acceptance. After a manuscript has been technically edited and formatted, it will be 

removed from the “Just Accepted” Web site and published as an Online First article. Please note 
that technical editing may introduce minor changes to the manuscript text and/or graphics which 
may affect the content, and all legal disclaimers that apply to the journal pertain. In no event 
shall HEP be held responsible for errors or consequences arising from the use of any information 

contained in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital 
Object Identifier (DOI(r)), which is identical for all formats of publication.” 
 



Front.Comput.Sci.
https://doi.org/10.1007/s11704-020-9420-6

RESEARCH ARTICLE

Nested Relation Extraction with Iterative Neural Network

Yixuan CAO1,2, Dian CHEN1,2 , Zhengqi XU1,2, Hongwei LI1,2 , Ping LUO1,2

1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS),
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract
Most existing researches on relation extraction focus on

binary flat relations like BornIn relation between a Person
and a Location. But a large portion of objective facts
described in natural language are complex, especially in
professional documents in fields such as finance and
biomedicine that require precise expressions. For example,
“the GDP of the United States in 2018 grew 2.9% compared
with 2017” describes a growth rate relation between two
other relations about the economic index, which is beyond
the expressive power of binary flat relations. Thus, we
propose the Nested Relation Extraction problem and
formulate it as a Directed Acyclic Graph (DAG) structure
extraction problem. Then, we propose a solution using the
Iterative Neural Network which extracts relations layer by
layer. The proposed solution achieves 78.98 and 97.89 F1
scores on two nested relation extraction tasks, namely
semantic cause-and-effect relation extraction and formula
extraction. Furthermore, we observe that nested relations are
usually expressed in long sentences where entities are
mentioned repetitively, which makes the annotation difficult
and error-prone. Hence, we extend our model to incorporate
a mention-insensitive mode that only requires annotations of
relations on entity concepts (instead of exact mentions)
while preserving most of its performance. Our
mention-insensitive model performs better than the mention
sensitive model when the random level in mention selection
is higher than 0.3.

Keywords Nested Relation Extraction, Mention

Received month dd, yyyy; accepted month dd, yyyy

E-mail: luop@ict.ac.cn

Insensitive Relation, Iterative Neural Network

1 Introduction

Relation Extraction (RE) is the task of determining whether
there are relations among some of the entities, and what the
relation types are, given a sentence and entities (mentions or
concepts) in this sentence.

Flat RE tasks extract relation among entities. Most flat
RE tasks extract binary relations, i.e. relation between two
entities, like BornIn relation between Trump and New York
City from the sentence “Trump was born in New York City
in 1946.”). Their results are the foundation and data source
for many downstream tasks such as knowledge base
construction and question answering. However, facts
described in natural language are beyond binary flat
relations due to the complex nature of language (as
exemplified in the following paragraphs). We summarize
two aspects of the complexity of relation: high-arity [1] and
nested. High-arity extends the concept of relation to be
among multiple entities. Nested extends the concept of
relation to be upon other relations. Complex relations are
expressed in natural language frequently, especially in
economics, finance, biomedicine and other fields where
people need to express in a precise way. We show one
example for each of the two aspects as follows.

The first example is taken from the healthcare field. The
sentence “2.5 mg Albuterol may be used to treat
acute exacerbations, particularly in children.”
expresses a relation with 4 participants (Albuterol,
acute exacerbations, 2.5 mg, children) to
accurately describe a treatment fact [1]. This kind of

 
© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 

 
 



2
Yixuan CAO et al. Nested Relation Extraction with Iterative Neural Network

1.(China GDP in 2018) = $13.41 trillion
2.(U.S.  GDP in 2018)-(China GDP in 2018) = $7.08 trillion
3.(China GDP in 2018)-(China GDP in 2017) = $1.17 trillion

RC8  : Economic-Index(China, GDP, 2018)
RC8e : Equal(RC8, $12.24 trillion)
RU8  : Economic-Index(U.S., GDP, 2018)
RU-C : Subtract(RU8, RC8)
RU-Ce: Equal(RU-C, $7.08 trillion)
RC7  : Economic-Index(China, GDP, 2017)
R8-7 : Subtract(RC8 - RC7)
R8-7e: Equal(R8-7, $1.17 trillion)

The prime minister of Canada said: “ The GDP in China was 
$13.41 trillion in 2018, $7.08 trillion less compared 
with the U.S., $1.17 trillion more compared with 2017.”

Relations:

Expressed facts:

Fig. 1 Example of nested relations

information appears in a vast number of medical articles.
Extracting the complete relations is the foundation of large
scale knowledge base construction in this field.

The second example shown in Figure 1 expresses
relations about economic statistics. To describe the first fact,
we first need a high-arity relation among three entities RC8:
Economic-Index(China, GDP, 2018), where
Economic-Index is the relation type. We say relation
RC8 has arity 3 (3 operands). In other words, it is a 3-ary
relation. Then, we need a nested relation RC8e: Equal

(RC8, $13.41 trillion). Note that although RC8e is
a 2-ary (binary) relation, its first operand is another relation
RC8. This is different from flat relations whose operands are
restricted to be entities. RU-C, RU-Ce, R8-7, R8-7e are all
nested relations. This kind of expression may come from
politicians who want to convey his/her opinion on certain
issues. As we are in a society congested with false-hoods
and hyperboles, there are a lot of works on fact-checking of
political discourses to ferret out misinformation [2].
Accurate and complete structured relation extraction from
those claims is a vital component to this end.

Although high-arity and nested have equivalent
expression power, high-arity formulation might have the
problem of candidates explosion when the relation structure
becomes complex and diverse (detailed in Section 3.2).
Hence, we focus on nested relation extraction in this paper.

First, we give a formal formulation of nested relation
extraction. It is a Directed Acyclic Graph (DAG) structure
extraction problem, with an arbitrary number of layers and
roots. Then, an Iterative Neural Network is proposed to
extract nested relations layer by layer. It extracts one layer
of relations at a time by generating all possible candidates
and classifying them. The positive candidates become new

Sentence 1.
The total revenue during 20151 and 20161 were $2 M and $2.2 M, 
increased 6% and 10%  in 20152 and 20162, and the total cost 
were $1 M and $1.3 M.
 

Mention-sensitive (MS) annotation:
R1  : Financial-Index(total cost, 20151, $1 M)  or  
R1’: Financial-Index(total cost, 20152, $1 M)
Mention-insensitive (MI) annotation: 
R*   � Financial-Index(total cost, 2015 , $1 M)  
     ignores whether 2015 is 20151 or 20152

Sentence 2.
The total revenue during 20151 and 20161 were $2 M and $2.2 M, 
increased 10%  in 20162, and the total cost were $1 M and $1.3 M.

Fig. 2 A sentence with mention repetition could be ambiguous for
mention-sensitive annotation.

relations to generate candidates in the next layer. This
process iterates until no new candidates can be generated.
The neural network has two major parts: 1) the horizontal
part includes Bidirectional-LSTM and attention mechanism
to represent entities, and 2) the vertical part is a relation
representation neural network composed of DAG-LSTM
which will grow as we extract more nested relations.

Furthermore, we observe that nested relations are usually
expressed in long sentences where an entity concept may be
mentioned repetitively. Since our model requires to specify
the exact mention involved in the relation, this raises an
issue on entity mention selection for annotation. Sentence 1
in Figure 2 illustrates such an example. Conceptually, we
understand that sentence 1 expresses that the total cost in
2015 was $1M. That is

R∗ = Financial(total cost, 2015, $1M).

However, 2015 is mentioned twice in previous clauses.
Usually, we have to specify the exact mention of 2015 used
in this relation during annotation. That is to say, annotators
have to judge which one of R1 and R′1 (in Figure 2) is
correct. According to our experiment, random selection over
these mentions will result in a poor performance (detailed in
Section 6.3). So, for higher accuracy, it is required that a
consistent annotation rule be used.

There might be two ways to design this annotation rule:
mechanical and linguistic. Mechanical rules are ones that do
not consider the language grammar, but just the mention
positions. For example, the rule “use the nearest time
mention occurred before the financial index” will assign R′1
as correct since 20152 is closer to total cost.
However, management over a large number of these rules is
difficult. What is worse, the annotation results from these



Front. Comput. Sci.
3

rules are not robust to the minor change of natural language
expressions. For example, sentence 2 only changes the
underlined part in sentence 1. But we have to choose 20151

in sentence 2, which is a quite different result with sentence
1 (where 20151 is regarded as not involved in the relation).
Our experiments also demonstrate that the training data from
these mechanical rules greatly deteriorate the model
accuracy (Section 6.3).

Linguistic rules choose the mention that is more
linguistically coherent. For the example in Figure 2, we
choose R1. The omitted 2015 in the last clause should refer
to the mention in the first clause because the first and the last
clauses are parallel structures, where the second clause is
just an additional discussion of the “total revenue” in the first
clause. Our experiments show that the dataset derived from a
consistent linguistic rule for annotation gives the best model
performance (Section 6.3). However, training in-house
annotators to follow a consistent linguistic rule is costly, and
it becomes more difficult if the annotation is out-sourced.

Therefore, we need a model that is not sensitive to the
selection of entity mentions in the training data. That is to
say, mention-insensitive models can use the training data
where entity mentions in the involved relations are not
specified. Specifically, we propose two ways to extend our
iterative model. The first way is to aggregate repetitive entity
mentions and give a synthesized representation of each
entity concept. The second way is to first generate all
possible relations over each entity mention, and then
synthesize a representation over these relation candidates.

To evaluate the mention-sensitive iterative neural network
model, two example tasks containing a large number of
nested relations were introduced in the experiment. They are
annotated by experts in mention-sensitive mode following
linguistic rules. The semantic causality relation extraction
task extracts semantic cause-and-effect relations. The
formula extraction task extracts financial indexes and
arithmetic relations. This task involves highly nested
relations with diverse structures. The results show the
effectiveness of our model.

To evaluate the mention-insensitive (MI) models, the
mention-sensitive (MS) formula dataset is transformed into
MI mode for training and evaluation. The loss of mention
selection information pulls down the performances of MI
models slightly compared with MS models. However, MI
models are insensitive to the noise on mention selection,
while the performance of MS models deteriorates quickly
when the noise increases. The result shows that the MI
models can achieve better results than MS models when the

level of randomness on mention selection is higher than 0.3.
Our contribution is summarized as follows:

• To the best of our knowledge, this is the first study that
gives a formal definition of nested relation extraction.
We formulate nested relation extraction as a Directed
Acyclic Graph (DAG) structure prediction problem.

• We propose a novel iterative neural network that can
extract the nested relations layer by layer iteratively

• To alleviate the mention-selection problem, we propose
two mention insensitive model on entity and relation
level

• We empirically show the effectiveness of the proposed
method by three experiments, and discover the “error
propagation” phenomenon in nested relation extraction.

2 Related Work

Most of the RE researches extract relations between two
entities [3–5]. Their research interests focus on model
structure, joint training with named entity recognition, and
external information incorporation [5–8]. Some new novel
ideas include applying pointer network [9], walk-based
method on entity graph [10], leveraging inter-sentence
relation paths [11], etc.

Researchers have noticed the information loss of binary
relation extraction during constructing knowledge graphs
and ontologies like YAGO [12], so they attached temporal,
geospatial and other prepositional information to relations.
In the bioinformatics area [13], McDonald et al. [14]
proposed an algorithm for high-arity relation extraction by
discovering binary relation cliques. Ernst et al. [1] proposed
a system to harvest high-arity relationships by pattern
matching and bootstrapping. This phenomenon indicates the
demand and necessity of complex relations for more precise
information acquisition. To our best knowledge, no generic
and systematic solutions about nested relation extraction
were proposed.

While most RE datasets and models focus on
mention-sensitive RE, the Biocreative V chemical disease
relation extraction (CDR) dataset [15] annotated relations on
the entity concept level. Thus, researches [16, 17] on this
dataset usually first align the concept to mentions, then
extract relation upon mentions. Verga et al. [17] proposed a
model that computes all-pairs mention scores to perform
multi-instance learning. By joint training with named entity
recognition and aggregating over mentions to form entity
pair scores, this model achieved the state-of-the-art result on



4
Yixuan CAO et al. Nested Relation Extraction with Iterative Neural Network

the CDR dataset. However, as the aggregation of entity pair
scores is designed for flat binary relations, it is not suitable
for nested relation extraction. The second MI model we
propose shares the same insight of aggregating relations. But
as we aggregate their representations instead of scores, they
can be input into higher layers for nested RE.

Other related tasks including open information extraction,
event extraction, and semantic parsing. Open information
extraction (OIE) is a special kind of relation extraction that
uses the predicates or text span from the text as relation type
instead of predefined schemas [18–20]. Sun et al. [21]
proposed a Seq2Seq model for open OIE which we use as a
baseline in our experiment. Event extraction extracts a
trigger word that indicates the occurrence of an event, then
extracts its arguments like time, subject, etc [22]. Relation
extraction techniques can be applied to the argument
extraction. Semantic parsing is a wide concept [23] which
covers works that map a natural language utterance into a
formal representation like Lisp [24] or logical
expressions [25, 26], database queries [23, 24, 27], and
UCCA structures [28]. Most of them utilized Seq2Seq
models, or transition-based models, which had to serialize
the output structure into a sequence. But that may suffer
from the situation that the generated sequences can be
invalid [26]. Our proposed solution which directly generates
a structure might provide a new approach in this field.

The DAG or Tree-LSTM model in our model has been
applied in sentiment analysis [29], semantic relatedness
classification [30], and traditional binary flat relation
extraction [5]. These works used Tree-LSTM on parsed
dependency trees as input to integrate external knowledge
and get a better representation of sentence or relation pair.
However, in our task, instead of applying Tree-LSTM on a
given static structure, we use it to extract the task-specific
nested structures.

3 Nested Relation Extraction

3.1 Problem Formulation

Nested Relation Extraction is the task of extracting semantic
relations among multiple elements (entities or other relation-
s), given a text and typed entities in the text.

A relation extraction task is usually carried out following
a predefined task-specific schema. For example, the ACE
2004 relation extraction task [31] defined five general types
of relations and further subdivided into a total of 24
types/subtypes of relations. Only semantic relations fall into

these categories will be annotated for training and extracted
during inference. For the example shown in Figure 1, one
task may aim to extract all the relations shown in the figure,
while another task only needs to extract the first fact and
neglect the other two. Thus, defining the schema of a task is
important in real-world problems, since this is the guide for
annotation and model construction.

The schema of traditional binary relations between two
entities is relatively simple. Here, we give a general
framework to define the schema for a nested RE task by
introducing notions of entity, relation, and configuration of
relations. For a specific nested RE task, we need to define
the task schema at the beginning to formally define what
kind of relations under which constraints to extract (but
semantically what is a relation is not defined here).

Entity. An entity mention consists of a word sequence and
an entity label (type), denoted as l(wi, ...,w j). It is a mention
of a certain real-world entity. The example shown in Figure 1
contains entities like:

• Index(GDP),
• Country(China),
• Value($, 13.41, trillion)

where Index, Country, Value are labels and GDP,
China, $13.41 trillion are words in entities. The
entity types are omitted in the notation of relations in
Figure 1. We denote the set of all kinds of entity labels in
this task as E.

Note that this definition where entities are typed is in line
with tasks like ACE 2004 and ACE 2005 [32]. But it is
different from SemEval-2007 Task 4 and SemEval-2010
Task 8 in which all entities are “nominals” [33, 34].
Attaching labels to entities has advantages and
disadvantages. The advantage is that we can shrink the
search space and reduce the number of classification by
constraining what kind of combination of entities may form
a relation. The disadvantage is that we shift some of the
burdens to the preceding named entity recognition module,
and errors from that module may propagate. In this paper,
we attach labels to entities in order to automate the
extraction process (introduced in section 4).

Relation. We use element to refer to a relation or an entity.
One relation consists of a tuple of elements and a relation
label (the type of the relation). The behavior of one type of
relations is defined as follows. Suppose l is a label, Li is a
set of labels, Rl the set of elements with label l, and RLi =⋃

l∈Li
Rl. Rl satisfies

Rl ⊆ RL1 × · · · × RLk



Front. Comput. Sci.
5

which means Rl is a subset of the Cartesian product of RLi .
We call Cartesian product L1 × · · · × Lk as the configuration
of Rl, denoted as Cl. The behavior of relations with label l is
defined by Cl. We denote L as the set of all the relation labels
in this task.

A tuple of elements (e1, ..., ek) ∈ Rl , or has l relation, if
and only if two conditions are satisfied:

1. this tuple satisfies Cl: ei ∈ RLi for all i = 1, ..., k, and
2. the l relation among these elements is semantically

described in the sentence.

We denote this relation instance as l(e1, ..., ek), and we call ei

the i-th operand of the relation.
For the example shown in Figure 1, the configuration of

the Economic-Index (EI) relation is {Country,
Region} × {Index} × {Year, Quarter}. That means
the first operand of an EI relation must be a Country or
Region entity, the second operand must be an Index

entity, and the third operand must be a Year or Quarter
entity. The formal notation of RC8 should be
EI(Country(China), Index(GDP), Year(2018))

where each of its operands is a typed entity instead of words.
According to condition (1), tuples not satisfying the
configuration, like (China, U.S., 2018), will never
have EI relation. (Canada, GDP, 2018) satisfying the
configuration of EI. However, according to condition (2),
since it is not semantically described in the sentence, this
tuple does not have EI relation. This is why Rl is a subset of
RL1 × · · · × RLk .

Schema. A schema of a nested RE task is defined by
specifying the entity label set E, the relation label set L and
the configuration of each relation Cl, l ∈ L.

Take the economic performance extraction task shown in
Figure 1 as an example. The entity label set E, relation label
set L, and configurations of relations are as follows:

E ={Country,Region,Index,Year,Quarter,Value}

L ={Economic-Index(EI),+,−,÷,=}

CEI ={Country,Region} × {Index} × {Year,Quarter}

C− ={EI,Value,+,−,÷} × {EI,Value,+,−,÷}

C+ =C÷ = C= = C−

When the configurations of some relations contain other
relations, the relation structure can become nested. − and ÷
relations are mutually included, so the relations can be
arbitrarily nested in this task.

3.2 Some Possible Solutions

We might convert nested relations into high-arity relations
for extraction. High-arity and nested are different aspects of

complexity as exemplified in introduction, and the same fact
can be represented by both of them. The ternary RC8 relation
in Figure 1 may be decomposed into two binary nested
relations: ((China, GDP), 2018). On the other hand,
facts expressed in nested relations can be transformed into
flat high-arity relations: RC8 and RC8e can be combined into
a 4-ary relation Economic-Index-Value(China,

GDP, 2018, $12.24 trillion).
Although they have equivalent expression power,

high-arity relations have the problem of explosion of
candidates when the operands of a relation increase. For
example, if we want to extract the third fact in Figure 1 using
high-arity extraction, it involves 7 operands. As there are 3
countries, 1 index, two times and 3 values in the sentence,
the number of operand combinations is 3 × 1 × 2 × 3 × 1 ×
2 × 3=108. But if we use nested relation extraction, we only
have 48 candidates, since we prone many false combinations
from lower layers. The difference between these two
numbers increases fast if there are more operands in a
high-arity relation and more entities in a sentence. In
Section 6.2, we show this problem with a real-world task.

Seq2Seq model is a general approach for many NLP
tasks. It has been used in related problems like open relation
extraction [21] and word problem [35,36]. Take the sentence
in Figure 1 as an example, a Seq2Seq model takes as input
the sentence token sequence, and directly outputs the
expressed facts as a sequence of tokens: “(China GDP 2018)
= $13.41 trillion;(U.S. GDP 2018)-(China GDP
2018)=$7.08 trillion;(China GDP 2018)-(China GDP 2017)
= $1.17 trillion”. Obviously, this kind of formulation
ignores the structure in the fact, thus has difficulty to achieve
high performance on real-world problems. We compare the
result of a Seq2Seq model in our experiment.

4 Solution with Iterative Neural Network

In this section, we introduce an Iterative Neural Network for
nested relation extraction in Mention-Sensitive mode.

The major challenge of nested RE is that we cannot
determine the total number of candidate tuples in a sentence,
even though we know the number of entities. This is because
relations can be arbitrarily nested. The traditional binary RE
model can enumerate the tuples of entities (candidates) to
classify. Thus, it can only extract the lowest layer of nested
relations. High-arity RE models face with the explosion of
candidates and Seq2Seq models ignore the structure
information as we discuss in the previous section. So, we



6
Yixuan CAO et al. Nested Relation Extraction with Iterative Neural Network

propose to generate candidate tuples for classification on the
fly. When new relations are extracted, they are used to
generate the next layer of candidates. Therefore, the layer by
layer process will extract nested relations of arbitrary layers.

During the extraction process, to classify a candidate,
some RE methods generate features based on the left and
right context of two entities [37]. They are not applicable to
nested situations where the operand of a relation could be
another relation. A nested relation could involve an arbitrary
number of entities, and defining the context of multiple
entities is complicated. Fortunately, deep learning is good at
representation. Existing methods generate a vector of
relation for classification. That vector also represents the
semantic meaning of a relation. We represent relations and
entities by using unified distributed representations, and
classify them based on these representations. Thus, we are
able to extract nested relations layer by layer iteratively.

4.1 Extraction Process Overview

In this subsection, we give an overview of the process that
iteratively generates and classifies candidates.

We define a candidate with label l as a tuple of elements
(e1, ..., ek) that satisfies condition 1 of relation l, but whether
its semantic meaning is correct or not (condition 2) is to be
determined. We denote it as l � (e1, ..., ek). A left arrow is
used to distinguish it with the notation of relation.

The overall process is to extract relations layer by layer
iteratively. Steps to extract one layer of relations include:

1. generate candidates according to configurations,
2. classify them,
3. set the positive candidates as relations.

This process terminates when no new candidates can be gen-
erated in step 1.

In step 1, we generate all the candidates that can be
generated (but not generated in previous layers) from the
current state. At the beginning of the i-th layer, we put all
entities and relations extracted from previous layers into a
set R, all candidates generated before into a set Q. The
candidates we need to generate form a set:

{ l � (e1, ..., ekl ) | l ∈ L ∧ ei ∈ R ∧ (e1, ..., ekl ) satisfies Cl∧

l � (e1, ..., ekl ) < Q}

In step 2, to classify candidates, we propose an iterative
neural network discussed in the next subsection.

4.2 Model Structure

The model is composed of three major modules. In
horizontal orientation, there are text representation module
and entity representation module. In vertical orientation,
there is relation representation module. The relation
representation module is suitable for the iterative generating
and classifying process as its structure is flexible.

The iterative neural network model is illustrated in
Figure 3. We use the example in Figure 1 to show the model
structure. The words are presented at the bottom, followed
by a text representation model composed of an embedding
layer and a Bidirectional-LSTM. Then each entity is
represented using attention mechanism over its tokens.
Finally, in the relation representation model, hidden vectors
of relations and candidates are computed layer by layer
using DAG-LSTM cells. Hidden vectors of candidates are
fed into fully connected networks for classification (shown
as “cls” boxes). The positive ones (with checkmarks) might
connect to the next layer. For example, the “-” cell is fed
into the next layer because it is the operand of other
candidates. However, “=” cell is positive but not fed into the
next layer because it is not operand of any other candidates
according to the task schema discussed in Section 3. The
negative ones (with cross marks) are discarded.

The text representation module consists of a word
embedding layer and a bi-directional LSTM [38] layer. This
module converts each word into a hidden vector hi that
encodes information about this word and its context.

The embedding layer has an embedding look up table,
which is a large matrix. The i-th vector in the matrix is the
embedding of the i-th word in the vocabulary.

The uni-directional LSTM network is a variant of the
recurrent neural network. It takes as input a token sequence.
At each step (token), an LSTM cell produces a new hidden
vector by combining previous step cell and hidden and the
current step input vector:

ht = f (ht−1, ct−1, xt).

The hidden vector encodes information of the input sequence
from the beginning to the current step. Bi-directional LSTM
contains two uni-directional LSTMs (forward and backward).
The hidden vector of each word is the concatenation of two
LSTM outputs.

The entity mention representation module is used to
represent entity mentions. One mention might consist of
multiple words and thus multiple hidden vectors. However, a
fixed-length representation is wanted for a mention. So we



Front. Comput. Sci.
7

DAG-LSTM cell
Examples:

1st layer

2nd layer

The GDP in China was $ 13.41 trillion in 2018

ValueCountryIndex

Embedding

Bi-LSTM

Attention

Economic-
Index

DAG-LSTM

Economic-
Index

Year

= - +

Words …

…

…

…

…

…

Text
Representation

Relation
Representation

Entity Mention
Representation

G
row

 layer by layer
cls clscls

clscls
=

A DAG-LSTM 
cell with two 

operands

Economic-
Index

A DAG-LSTM 
cell with three 

operands

Fig. 3 Model structure with an input example

apply a dot product attention [39] on words in this mention.
Suppose the word vectors in this mention are (h1, h2, ..., hn),
the hidden state h of mention is computed as:

si =wT hi, for i = 1, ..., n

ai =
exp(si)∑n

j=1 exp(s j)

h =

n∑
i=1

aihi

(1)

where w is a trainable parameter.
The relation representation module applies DAG-LSTM

to represent relations and candidates. The DAG-LSTM is an
extension of Tree-LSTM [30, 40] that has been applied in
many tasks [5, 30]. One DAG-LSTM cell combines hidden
vectors of multiple operands into a vector to represent its
corresponding relation or candidate. Multiple layers of
DAG-LSTM cells will let the information flow among the
nested relations and candidates. One DAG-LSTM cell takes
as input the hidden and cell states h j, c j from each of its
operands, and the embedding e of the relation label. For
simplicity, we concatenate hidden vectors into vector
v = [h1, ..., hk]. The computation process is as follows:

i =σ
(
W ie + U iv + bi)

f j =σ
(
W f

j e + U f
j v + b f

j
)
, j = 1, ..., k

o =σ
(
Woe + Uov + bo)

ĉ = tanh
(
Wce + Ucv + bc)

c =i � ĉ +
∑k

j=1 f j � c j

h = tanh(c) � o

(2)

where W∗,U∗, b∗ are network parameters, � is the
element-wise product, h and c are hidden and cell states of
this relation or candidate, i, f∗, o are input, forget, and output
gates as sequential LSTM [38]. To classify a candidate, we
feed its hidden vector h into a multi-layer fully connected
network followed by Softmax function to compute its
probability of correctness.

During training, the annotated data only contain correct
relations, so we generate all possible candidates. Candidates
appear in annotation results are positive samples, and others
are negative samples. One sentence contains many samples
(candidates), we compute though text and entity
representation module for one time, which output the hidden
vectors of all entities. Then all candidates in this sentence
are computed based on these vectors. This will reduce
redundant computations compared to re-compute entity
hidden vectors for each candidate.

The training objective is to minimize the negative
log-likelihood over all candidates:

L =
∑
s∈D

∑
c∈C(s)

yc log(p(c)) + (1 − yc) log(1 − p(c))

where D is a dataset, s is one sentence, C(s) is the set of all
candidates in s, yc is the label of candidate c, and p(c) is the
probability our model predicts that c is a relation.

5 Mention-Insensitive Extraction

The iterative neural network we introduced above is a
mention-sensitive (MS) model that requires to specify the



8
Yixuan CAO et al. Nested Relation Extraction with Iterative Neural Network

Relation Aggregation

Mention Sensitive RelationMention Aggregation

…

during 2015 2015

TimeTime

Text

Entity mention

total cost

Index

Year 2015

…

Financial-
IndexRelation

Text

Entity mention

MI-
Financial-

Index

Relation

MS-
Financial-

Index

cls

MS-
Financial-

Index

cls

Mention Aggregation Relation Aggregation

…

2016

Time

…

during 2015 2015

TimeTime

total cost

Index

……

2016

Time

Fig. 4 Model in mention-insensitive mode. Nodes with thick edges are aggregation nodes.

exact mention involved in relations. In this section, we
extend the iterative model from two aspects to adapt it to the
mention-insensitive (MI) mode that only requires to specify
the entity concept involved in relations.

5.1 Mention aggregation

The first way to extend the iterative model to MI mode is by
mention aggregation.

The mention set M(e) of entity concept e is the set of all
mentions of e in the sentence. For example, in sentence 1 in
Figure 2, mention set of 2015 is M(2015) = 20151,
20152. So, both R1 and R′1 will be Financial-Index
(total cost, M(2015),$1M) in MI mode.

Corresponding to the mention set concept, we add an
extra “mention aggregation” layer between entity mention
and relation representation layer to our model as shown on
the left side of Figure 4. This layer aggregates mentions in
the same mention set. The aggregation method we adopt is
the attention mechanism. Given a mention set
M(e) = {m1,m2, ...,mn} of concept e, each mention mi has a
representation hi from the entity mention module. In the
mention aggregation module, the representation he of M(e)
is computed using the same attention model as Equation (1)
in the entity mention module. Then, he, as the representation
of all the mentions of e, is fed into the relation
representation module.

The overall process of layer by layer iterative extraction is
not changed. But when generating candidates, we use
mention set instead of individual mention if the mention is
repetitive.

5.2 Relation aggregation

Aggregating entity mentions does not model the interaction
between entity mentions. The mentions of an entity are
mixed up before fed to involved relations. To model the
interaction between mentions, we propose the relation
aggregation model that first represents the MS relations, and
then aggregates them (shown on the right side of Figure 4).

For a relation type l that may have repetitive mentions in
operands, we split it into two relation types MS-l and MI-l.
MS-l inherits the configuration of l. MI-l’s configuration is
special: it may have a flexible number of MS-l relations as
operands.

The MI mode annotates upon the entity concept. Thus, for
relation r = l(M1, ...,Mk), we define the MS relation set of r
as:

S (r) = {MS-l(s) | s ∈ M1 × M2 × ...,×Mk}

where × denotes the Cartesian Product. Each relation in S (r)
is mention insensitive. But whether or not each of them is
correct is unknown in MI annotation.

Then, we define an aggregation relation MI−l(S (r)) which
takes the MS relation set of r as operands and MI−l as relation
type. In summary, a mention-insensitively annotated relation
will be transformed as:

r = l(M1, ...,Mk) → S (r), MI − l(S (r)).

For example, the relation R∗ shown in Figure 2 is
transformed into three nodes in Figure 4. The MS relation
set S (R∗) has two nodes with label MS-Financial-

Index, and the aggregation relation is the
MI-Financial-Index node with a thick edge.

Consequently, in the model, we first represent each
relation in S (r), then aggregate them to represent



Front. Comput. Sci.
9

MI − l(S (r)). This aggregation is also achieved by attention
mechanism the same as the entity mention representation
module. Such design allows each MS relation to represent a
concrete relation among mentions and the aggregation
relation chooses some good MS relations as its
representation by attention model.

This relation aggregation model takes different steps in
each layer of the iterative extraction process. The 1)
generate candidate, 2) classify and 3) select relation steps of
each layer are changed into the following steps:

1. generate MS-l relations according to Cl,
2. generate MI-l candidates by a special generation

procedure that aggregates MS relation set,
3. classify MI-l candidates
4. set the positive MI-l candidates as relations.

where the original generating candidate step becomes the first
2 steps. The training loss only contains the classification loss
of MI relations, as the labels of MS relations are unknown.
Other parts of the overall process are the same as the iterative
neural network.

6 Experiment

Three experiments are conducted in this section. The first
two experiments extract nested cause-and-effect relations
and formula relations to show the effectiveness of our
mention-sensitive iterative neural network on nested RE.
The third experiment evaluates our mention-insensitive
models, comparing with mention-sensitive models trained
on different levels of noise.

The hyper-parameter settings of our model are as follows.
The vocabulary size is 6000 because the vocabulary in the
financial dataset is relatively concentrated and we transform
time, financial index phrases into special tokens. The
embedding size and hidden vector size of Bi-LSTM are set
to 256. We add position encodings to word embeddings
following [41]. Since Bi-LSTM will concatenate hidden
vectors from forward and backward, we set the hidden size
of DAG-LSTM to 512. The final fully connected layer is
512 × 1024 × 2. We use Adadelta [42] as the optimizer with
learning rate = 1.0 and batch size = 8. The dataset is split
into 6:2:2 for training, validation, and testing. We apply the
early stop technique and use the best model on the validation
set for evaluation.

The reason for the 
diminishing of return 

on equality is that

the company withdrew 
15% of its stock�

leading to the 
diminishing of its

 net profits

Clause Clause Clause

causality 
cause effect

causality
cause effect

C1 C2 C3

R1

R2

Fig. 5 An example of semantic causality extraction.

0 10 20
# of entities 

in one sentence

0.0K

1.0K

2.0K

3.0K

4.0K

# 
of 

se
nt

en
ce

s

0 10
# of relations 

in one sentence

0.0K

1.0K

2.0K

3.0K

4.0K

0 2 4
# of layers 

in one sentence

0.0K

2.0K

4.0K

6.0K

8.0K

Fig. 6 Distributions of sentences in semantic causality dataset.

The evaluation metrics are defined as

Precision =

∑
s∈D |R̂s ∩ Rs|∑

s∈D |R̂s|

Recall =

∑
s∈D |R̂s ∩ R|∑

s∈D |Rs|

F1 =
2 × Precision × Recall

Precision + Recall

where s is a sentence from dataset D, R̂s is the set of predicted
relations in s, and Rs is the set of annotated relations in s. Two
relations are the same if both their operands and labels are the
same.

In the first two experiments, we analyze our model in two
modes: “From scratch” means that the model predicts
relations layer by layer, and errors in one layer will
propagate to the subsequent layers. This is the situation
when the model is applied in the real world. “Guided”
means that the prediction results of the current layer are
replaced by correct results when predicting the following
layers. This is the situation when we are training the model.
We find that there is a performance gap between these two
modes (detailed in the experiments).

6.1 Semantic Causality Relation Extraction

Task Description. Semantic causality relation is the relation
that describes cause and effect between clauses or relations.
For example, Figure 5 shows a sentence with three clauses



10
Yixuan CAO et al. Nested Relation Extraction with Iterative Neural Network

Table 1 Statistics of two datasets. “#nested relation” means the number of relations whose operands contain other relation(s).

#relations in layer
#sentence #relation #nested rel #root 1 2 3 4 > 5

Formula 106,048 876,493 484,501 348,349 41.19 43.27 14.49 0.55 0.50
Causality 10,000 39,812 6,572 36,417 83.49 15.44 1.04 0.03 0.00

C1, C2, and C3. C2 is the cause of C3, which forms a relation
R1. R1 (or the combination of C2 and C3) is the cause of C1.
More examples are shown in appendix. The task schema is:

E ={Clause},

L ={Causality},

CCausality ={Clause,Causality}×

{Clause,Causality}

Statistics. Ten thousand of sentences are selected and
manually annotated from bond prospectuses in Chinese. The
basic statistics are reported in Table 1. The distributions of
the sentences are shown in Figure 6. There are 14.62% of
sentences that have nested relations.

Baseline. At first glance, this problem seems to be simple
due to the existence of keywords like “reason”, “leading to”,
and “because”. So we attempt to solve this problem by rule.
By digging into the annotated data, 293 distinct keywords
are summarized into 4 categories. Then, each sentence is
converted into a pattern sequence consisting of clauses and
keywords, and 1344 patterns are found. We summarize over
130 most frequent patterns based on these patterns and their
relation results, and come up with an expression parsing-like
algorithm. This algorithm can cover 518 patterns, more than
88% of sentences.

Since most of the sentences have 1 or 2 layers of relation,
we convert nested relation like R2=causality(R1, C3) in
Figure 5 into a ternary flat relation causality3(C1, C2, C3),
and extract binary and ternary relations together using our
model. Binary and ternary relations cover 99% of all the
relations. We denote this method as “High-arity”.

The Seq2Seq model is not suitable for semantic causality
extraction because each entity is a clause. Sequences like
“((A cause B) cause C); E cause F”, where A, B, C are
clauses, is too long and too difficult to predict.

Result Analysis. The results on the test set are shown in
Table 2. Besides the overall result, in Figure 7, we also report
the performances on each layer. Since the relations in layer 3
or higher are rare (0.7%), we report the result of relations in
layer 1, and relations in layers > 2.

First, we compare the results between the rule-based

Table 2 Results on semantic causality extraction.

Model Precision Recall F1

Rule-based 70.80 17.48 28.04
High-arity 77.49 79.50 78.48
Our model (From scratch) 78.51 79.41 78.96
Our model (Guided) 81.63 80.99 81.31

1 2
layer

0

20

40

60

80

100
precision

1 2
layer

0

20

40

60

80

100
recall

Our (From scratch)
Our(Guided)
Rule
High-arity

Fig. 7 Performances on different layers of relations on semantic causality
extraction task. “Guided” means that at the i-th layer, we use the correct
annotation result of previous layers to generate candidates., “From scratch”
means no label information is used.

algorithm and our model (from scratch). The first row of the
table shows that the performance of the rule-based algorithm
is poor. The precision of the rule algorithm is 7% lower than
our model. Although we have put efforts on rule designing
and many rules are collected, the recall is still very low
(< 18%). Designing more rules may increase its recall but
may hurt the precision, and bring conflict among rules. The
second row shows the result of our model. The overall F1
score is 81.08, which is much higher than the rule algorithm.
In Figure 7, layer-wise evaluation shows a drop of
performance of our model on the second layer, but still
significantly outperforms hand-crafted rules. The
comparison between rule and our model indicates that the
semantic causality extraction is a non-trivial problem,
despite the existence of strong causal conjunction features
like “since” and “because”.

Second, we compare the result of high-arity and our
model. High-arity performs slightly worse than our model
(77.49 vs. 78.51), and the difference comes from the recall
on the second layer as shown in Figure 7. This means that



Front. Comput. Sci.
11

when the nested relations do not have many layers, nested
formulation still outperforms flat high-arity formulation.

Third, we introduce the phenomenon of error
propagation. In Figure 7, the performance of Guided is the
same as From Scratch at layer one since their entities are the
same, but is over 10% better than “From scratch” in layers
> 2. That means the error in the first layer will propagate
and accumulate through layers which brings in two types of
errors. 1) If a relation is not recalled in the first layer, then
relations in subsequent layers that take it as an operand can
not be extracted. This will affect the recall of subsequent
layers. 2) If a relation is falsely extracted, the process might
generate strange candidates based on it which are never seen
during training. This will affect the precision of subsequent
layers.

We summarize three reasons for the decline of
performance in higher layers: 1) extracting the high layer
relations is intrinsically harder in semantic as its more
complex, 2) there are fewer relations in high layers, and 3)
error propagation and accumulation through layers.

6.2 Formula Extraction

Task Description. Verbal descriptions over the numerical
relationships among some objective measures widely exist in
financial documents. We collect a large manually annotated
dataset from bond prospectuses.

Figure 8 shows an example from our dataset. Three types
of entities are extracted in advance. A time entity describes a
certain time like year 2016. An index entity describes a
financial index, like “other payables”. A value entity
describes a value like $ 80 million or 98%. The first kind of
relation is the relation between time and index. They are
shown as relations with the “@” mark. This kind of relations
refer to financial indexes at a certain time, which should be
equal to some numbers. Then, the higher layers of relations
are summations, divisions, and equations. More examples
are shown in appendix. The task schema is:

E ={Time, Index, Value}

L ={@, +, -, ÷, =, ≈, <, CGR, Prop}

C@ ={Time} × {Index}

C+ ={@, +, -, ÷, Value}×

{@, +, -, ÷, Value}

C= =C≈ = C< = C− = C÷ = CCGR = C+

CProp ={@,+,−,÷}

The CGR (compound growth rate) relation is the relation
described in sentences like “the compound growth rate of

0 10 20 30
# of entities 

in one sentence

0K

5K

10K

15K

20K

# 
of 

se
nt

en
ce

s

0 20 40
# of relations 

in one sentence

0K

5K

10K

15K

20K

25K

0 5
# of layers 

in one sentence

0K

10K

20K

30K

40K

50K

Fig. 9 Distributions of sentences in formula extraction dataset.

income from 2005 to 2018”. The Prop relation is a division
where the divisor is omitted in the sentence, so it has only
one operand. We convert all “>” relations into “<” relations
by reversing their operands since we think they are
syntactically similar in natural language. So, there are 9
types of relations in this task.

Statistics. More than a hundred thousand of sentences are
annotated. The basic statistics are reported in Table 1. The
distribution of the number of relations and layers in a
sentence are shown in Figure 9. Note that there are sparks at
the number of relation = 0. Since the sentences are not
strictly filtered, there are many sentences expressing no
relations. Also, note that no sentences have one layer of
relations. The first layer of relations must be @ relations
according to the definition above. Our annotation guide
requires annotators to annotate @ relations that are operands
(or descendants) of equation or comparison relations. If it is
not operand of any other relations, it will not be annotated.
So, if there are relations in a sentence, it must have at least
two layers. Second layer relations are relations like =

relations between @ relations and numbers, or the arithmetic
relation between @ relations. Third layer relations are
relations like = relations between arithmetic relations and
numbers, or more complex arithmetic relations. The
distribution shows that the relations are highly nested in this
dataset: more than one-fourth of sentences have 3 or 4 layers
of relations.

Baseline. High-arity relation extraction is infeasible for
this task due to the explosion of the number of candidates. If
we get each root of the nested structure and analyze its
structure, we find there are 161 templates in test data. A
template looks like
T1=Time@Attribute+Time@Attribute=Value,
can be regarded as a configuration. To cover 98% (the recall
our model achieves in Guided mode) of the relations, we
need the most frequent 11 templates. One of the top 11



12
Yixuan CAO et al. Nested Relation Extraction with Iterative Neural Network

2017 prepayment and other 
payables �890 M , constituted current 

liabilities 93.88%2016 and �920 M  94.51%and and

@
TI

@
TI

@
TI

@
TI

@
TI

@
TI

+
op1 op2

=
op1 op2

÷
dividend divisor

÷
dividend divisor

+
op1 op2

=
op1 op2

=
op1 op2

=
op1 op2

 in an aggregate 
amount of

Time Time Index Index IndexValue Value Value Value

1st layer

2nd layer

3rd layer

4th layer

, we have of In

Fig. 8 Example of formula extraction.

Table 3 Results on formula extraction.

Model Precision Recall F1

Seq2Seq 86.56 75.59 80.71
Our model (From scratch) 96.05 95.85 95.95
Our model (Guided) 97.97 97.99 97.98

templates involves 5 time entities. If a sentence has 10 time
entities, there are 105 possible combinations of time entities
for one template. As a result, the top 11 templates generate
1525 times more candidates than our nested approach. It is
infeasible to directly extract flat high-arity relations due to
the limitation of computing power.

For Seq2Seq model, we use the Seq2Seq model from
[35, 43], and incorporate attention [41] and copy
mechanisms [44] to improve its performance. The entities in
the sentence are replaced by special tokens, like “In t1 and
t2, we have i1...”, and the output is a sequence like
i1@t2 + i2@t2 = v1. If there are multiple formulas in a
sentence, we concatenate them by a special token “;” and
their order is determined by the position of elements in each
expression. Moreover, following [36], we transform the
expression from infix to prefix as a normalization method.
As a result, a sentence with two formulas might output:
“=+@i1t2@i2t2v1; =@i3t3v3”. Our implementation is based
on an open source neural translation system OpenNMT [45].

Result Analysis. The results on the test set are shown in
Table 3 and the layer-wise performances are shown in
Figure 10. The first intuition is that this result is better than
the result of semantic causality. We think this largely
attributes to the data size: there are 10 times more data in
this task, and deep learning models are data-hungry.

1 2 3 4 5
layer

0

20

40

60

80

100
F1 by layer

Our (From scratch)
Our(Guided)
Seq2Seq

@ = < / - + CGRprop
0

20

40

60

80

100

F1
 / 

di
st

rib
ut

io
n

0

1

2

3

av
er

ag
e 

la
ye

r

F1 by type (our model)

F1
Frequency
Avg Layer

Fig. 10 Performances on different layers, and on different relation types on
formula extraction task.

Our model significantly outperforms the Seq2Seq model,
especially on recall and on higher layer relations. This is
because there are too many relations in one sentence, and the
orders of them are too difficult for Seq2Seq models to learn.
Moreover, learning the structured sequence is hard for
Seq2Seq models.

In Figure 10, the result of Guided on different layers are
stable, F1 score drops slightly from 97.98% on layer 1 to
93.79% on layers > 5. That means our model is capable of
extracting nested relations in high layers. Notice that, F1
score in layer 1 is lower than layer 2 and 3. The reason is as
follows. Highly nested relations need lower layer relations
as operands. As mentioned above, our annotation guide asks
to annotate relations that are descendants of equation or
comparison relations only. Some of the lower layer relations
are very subtle because the model has to discover the high
layer relations first before extracting them. For example, in
the sentence “The income in 2019 was good.”, although it
mentions income@2019, as it is not used in other



Front. Comput. Sci.
13

comparison relation, it is not annotated in the dataset (to
reduce the labeling effort). Thus extracting these lower layer
relations is not simpler than high layer ones. On the other
hand, when the lower relations are extracted, extracting
higher layer relations becomes easier. The results on layers 4
and 5 are lower than layers 1-3 because the number of
relations in layers 4 and 5 is one order of magnitude smaller,
as shown in the “percentage” row.

The result of From scratch is the same as Guided on layer
1 since they have the same candidates. The result of From
scratch has a sharp drop from layer 3 to layers 4. The gap
between Guided and From scratch is over 20% on layer 4
and layers > 5. Thus, the sharp drop should largely attribute
to the error propagation (illustrated by the large gap).
Compared with the result of semantic causality extraction,
the error propagate in this task is worse, as the number of
layers is larger. There are researches on alleviating error
propagation problem from named entity recognition to RE
by joint training [5] and novel tagging [46]. How to alleviate
error propagation in nested RE is an interesting future work.

In the right subfigure of Figure 10, we also report the
performance by the type of relation, as well as the frequency
and average layer number of each type. The performance is
positively related to the frequency and negatively related to
the average layer.

Efficiency. The average inference time per sentence is
0.042s on the formula extraction task, 0.024s on the
causality extraction task. It is almost “realtime” to predict
relations in one sentence, but it takes several minutes to
process a large document.

6.3 Mention-Insensitive Formula Extraction

Task Description. In this subsection, we test our MI models
on the transformed formula dataset and compare them with
MS models. Mention repetition is rare in the cause-and-effect
dataset, so we do not test on it.

The formula extraction dataset discussed above contains a
huge number of entities, and the mention repeats frequently
(like the example shown in Figure 2). We transform the
formula dataset into an MI annotation result as follows. In
this experiment, only mentions with the same expression are
regarded as the same entity concept, and entity linking and
coreference resolution are not used. That is because, in
financial documents, wordings for the same entity concept
are usually the same, and pronouns are used rarely. For other
tasks where concepts have diverse expressions and pronouns
are used frequently, entity coreference resolution would be a

necessary preprocessing. We only regard the same
expressions of Time, Index mentions as the same
concepts, which means only “@” relation will be directly
affected according to the task schema of formula extraction.
Value mentions are rarely repeated and mentions like
100% may not have the same meaning when repeated.

The formula dataset is annotated by full-time annotators
following linguistic rules. Every annotator gets strict
training before start and takes daily meetings on the new
difficult examples. Every sentence is annotated by two
annotators and the conflicts are judged by another
moderator. Such rigor procedure produces a high-quality
MS dataset. However, as crowdsourcing is currently the
dominating data collection paradigm, high quality MS
annotation dataset like our formula dataset might be hard to
obtain.

We imitate the result following mechanical rules. For a
“@” relation, it has two operands: time and index. If one of
its operands is repetitive, we make rules on how to choose
one from the mention set. We consider the distance between
operands, whether they are in the same clause, and the order
they appear in the sentence. Among the combinations of
these conditions, two kinds of rules make the least changes
on the clean MS dataset:

• A. Find the closest time and index mention while trying
to make the time mention appears before the index.

• B. If exist, use the time and index in the same clause.
Otherwise, use rule A.

The details of rule A and rule B are shown in the Appendix.
We also imitate the inferior annotation result from

crowdsourcing by adding noise to the MS dataset. For an
operand of a relation, if it is an entity and its corresponding
mention set M(e) (refer to Section 5.1) has more than one
element, a replacement action sets this operand with an
arbitrary mention in M(e). The probability α of taking a
replacement action is called the random level in mention
selection, which indicates the proportion of relations that are
annotated by not well-trained annotators who choose
mentions randomly.

Statistics. We denote the formula dataset as D+, and
sentences that contain repetitive mentions as D.
|D|/|D+| = 31.70% where |D| is the number of sentences in
D. As we concentrate on the mention-sensitivity problem,
using D+ for training and evaluation might dilute the effect
of mention repetition phenomenon. Thus, D is used
throughout this experiment. Two datasets are derived from
D: DMS and DMI for the MS and MI annotation methods.



14
Yixuan CAO et al. Nested Relation Extraction with Iterative Neural Network

Table 4 F1 scores of Mention-Insensitive models and comparison to Mention-Sensitive model

Model Trained on all relations rep. non-rep. @ @(r) @(n)
100.00% 33.11% 66.89% 42.02% 10.97% 31.05%

MS-DMS Mention-Sensitive DMS 94.05 91.43 95.35 97.93 96.28 98.51
MS-DMS (A) Mention-Sensitive DMS (A) 87.90 84.63 89.51 93.98 91.62 94.80
MS-DMS (B) Mention-Sensitive DMS (B) 88.71 85.47 90.32 94.35 92.33 95.05
MI-m-DMI Mention Aggregation DMI 91.84 88.54 93.49 97.16 95.38 97.79
MI-r-DMI Relation Aggregation DMI 91.48 88.58 93.05 97.22 95.57 97.84

.0 .1 .2 .3 .4 .5 1.0
random level

80
82
84
86
88
90
92
94
96

F1 of all relations

MS
MI-m
MI-r

.0 .1 .2 .3 .4 .5 1.0
random level

70

75

80

85

90

95
F1 of rep.

.0 .1 .2 .3 .4 .5 1.0
random level

92
93
94
95
96
97
98
99

F1 of @

.0 .1 .2 .3 .4 .5 1.0
random level

84
86
88
90
92
94
96
98

F1 of @(r)

.0 .1 .2 .3 .4 .5 1.0
random level

55

60

65

70

75

80

85
sentence correct

Fig. 11 Comparison of MI models with MS models under different levels of noise.

We denote the transformed MS dataset following rule A
and rule B as DMS (A) and DMS (B). The percentages of
corrupted relations to relations containing repetitive
mentions are 21.76% and 20.72% respectively. The random
level α is set to 0.1, 0.2, 0.3, 0.4, 0.5 and 1, and the
corresponding datasets are denoted as DMS (α). Note that a
replacement action might choose the original correct
mention, resulting in a null operation. Thus the actual
changes occurred is less than α. The percentages of
corrupted relations to relations containing repetitive
mentions are 5.37%, 10.90%, 16.77%, 21.83%, 27.83%, and
55.18% respectively.

Result Analysis. Results of MS models are converted
into MI results for evaluation so that all results are compared
under MI mode. To show the results in more detail, models
are evaluated on several subsets of relations:

• “all relations”: all relations,
• “rep.”: relations having repetitive mention (RM)

descendants,
• “non-rep.”: relations having no RM descendants,
• “@”: @ relations (between Index and Time),
• “@(r)’: @ relations having RM operands,
• ‘@(n)”: @ relations having no RM operands,

where the descendants of a relation r are all the elements un-
der the tree rooted at r in the DAG.

(1) MS-DMS vs. MS-D+
MS . In Table 4, on all relations,

the F1 score of MS-DMS drops about 2.0 points compared
with the result of MS-D+

MS (in the last experiment). This is
because dataset D is smaller and more difficult than D+.

(2) MS-DMS vs. MS-DMS (A/B). In Table 4, compared
with MS-DMS , MS-DMS (A/B) F1 scores drop shapely
(about 5.3 to 6.1). We examine their precisions and recalls,
and find that the recall on @ relation drops dramatically
from 98 to 90, while the precision keeps at 98. The reason is
that the model might not precisely handle the mechanical
rules which requires a precise count on repetitions and
measure the distances. Instead, learning from mechanical
rules, models discard many @ relations that are semantically
correct (like R1 in Figure 2). Such result broadcasts from
@(r) to @(n), severely harm the recall. As @ relations are
the first layer relations, the relations on higher layers
perform poorly due to error propagation.

Although the percentages of corrupted relations of
DMS (A/B) are smaller than DMS (0.4), MS-DMS (A/B)’s
performance is worse than MS-DMS (0.4) (as shown in
Figure 11). We think the reason is that DMS (0.4) is
uniform-randomly corrupted, but DMS (A/B) is corrupted
biased to a certain rule. Thus, the model might not learn the
noise from DMS (0.4), and only can focus on the correct
relations; while the model might partially fit the biased rules
from DMS (A/B), which affect the ordinary relations. Thus,
the MS model on datasets following mechanical rules



Front. Comput. Sci.
15

performs poorly on this task.
(3) MI-r/m-DMI vs. MS-DMS . In Table 4, due to the

information loss on the mention selection, MI models
perform poorer than MS-DMS . The results of MI-m and
MI-r are quite similar, dropping around 2.0 to 2.4 points. On
“rep.” and “non-rep.”, all the three models perform poorer
on rep. than non-rep. Performances of MI models drop more
on rep. than non-rep. (2.9 vs. 2.1 on average), and similar
for @(r) and @(n) (0.8 vs 0.7 on average).

The drop of MI models on rep. and @(r) is as expected
since there is information loss on such relations. The reason
that performance also drops on non-rep. and @(n) is as
follows. In MS dataset, both rep. and non-rep. relations are
annotated mention-sensitively. Thus all relations are
homogeneous (mention-sensitive). But in MI dataset, rep.
and non-rep. are heterogeneous: non-rep. relations know the
exact mention (mention-sensitive) while rep. relations do not
(mention-insensitive). So, the data used to learn the
mention-sensitive relations (non-rep.) in DMI is smaller than
DMS . Therefore, the performances on non-rep. and @(n)
also drop. Study on how to keep the performance of non-rep.
relations is an interesting future work.

(4) MI-r/m-DMI vs. MS-DMS (α). We try to understand
the difference of performances between MI and MS models
quantitatively. So, we compare MI models with MS models
that trained on different random levels of mention selection.
All of these models are tested on the same gold annotation.
The result is shown in Figure 11. As MI models are
insensitive to noise, their performances are flat w.r.t. random
level. The first four subfigures are F1 scores on different
subsets of relations. The right-most subfigure shows the
percentage of sentences whose structures are extracted
perfectly. From Figure 11 we can see that the performances
of our MI models are close to MS-DMS (0.3). Thus, if a
dataset is annotated with 30% or more randomness on
relations with repetitive mentions, we can adapt MI models
to extract nested relations for better performance.

7 Conclusion

In this paper, we extend the concept of relation extraction
from flat relations to nested relations. We propose a formal
formulation of the nested relation extraction problem and
introduce an Iterative Neural Network (INN) that is able to
extract nested relation layer by layer. This model performs
well on two different nested relation extraction tasks.

Moreover, to handle the noise from mention-sensitive

annotation, we extend INN from two aspects: mention
aggregation and relation aggregation. These extensions will
perform better compared with vanilla INN when the random
level of mention selection is above 0.3.

Some future research directions include how to alleviate
the error propagation problem and explore more applications
of nested RE. How to train the model with less data is also
important, since labeling complicated nested relation is time-
consuming and is the largest barrier in applications.

8 Acknowledgements

This work was supported by the National Key Research and
Development Program of China under Grant No.
2017YFB1002104, the National Natural Science Foundation
of China under Grant No. U1811461, and the Innovation
Program of Institute of Computing Technology, CAS.

A preliminary version of this work has been published in
the Proceedings of the 28th ACM International Conference
on Information and Knowledge Management (CIKM) [47].

Appendix

Table 5 More examples from two datasets, translated from Chinese.

Semantic Causality
1. (C1) The net income of company A was negative in

2016 (C2) because the operating costs were increas-
ing, (C3) and the industry had been sluggish in recent
years. (C2→ C1), (C3→ C1)

2. (C1) The net income was negative in 2016 (C2) be-
cause the projects under construction had not got the
presale qualification, (C3) and therefore the income
was not carried forward, (C4) leading to a deficit.
((C2→ C3)→ C4)→ C1

Formula (We omit simple relations for brevity.)
1. In 2015, the inventory was $11.46M, constituted

5.64% of the total assets, decreased $1.84M com-
pared with 2014, and fell by 13.83%.

2. In years 2014, 2015, 2016 and 2017, the liquid
liabilities were $3,539M, $2,651M, $2,585M, and
$2,148M, constituted 16.89%, 11.87%, 11.22%, and
9.24% of the total liabilities, and the ratios were
trending downward. (Here, “trending downward”
implies 3 “<” relations among 4 ratios)



16
Yixuan CAO et al. Nested Relation Extraction with Iterative Neural Network

Algorithm 1 Mechanical Rules A and B
function ruleA(times, indexes)

if multiple(times) and multiple(indexes) then
times = preserve-the-first-one-in-sentence(times)

end if
if single(times) and multiple(indexes) then

time = times[0]
index = nearest-after(indexes, time)

else if multiple(times) and single(indexes) then
index = indexes[0]
time = nearest-before(index, times)

else
time, index = times[0], indexes[0]

end if
return time, index

end function

function nearest-after(mention-list, pivot)
mentions-after = preserve-after(mention-list, pivot)
if exist(mentions-after) then

mention-list = mentions-after
end if
return the-nearest(mention-list, pivot)

end function

function ruleB(times, indexes)
if multiple(times) and multiple(indexes) then

times = preserve-the-first-one-in-sentence(times)
end if
if single(times) and multiple(indexes) then

clause-indexes = preserve-same-clause(indexes,
times[0])

if exist(clause-indexes) then indexes = clause-
indexes

end if
else if multiple(times) and single(indexes) then

clause-times = preserve-same-clause(times, index-
es[0])

if exist(clause-times) then times = clause-times
end if

end if
return ruleA(times, indexes)

end function

References

1. Ernst P, Siu A, Weikum G. Highlife: Higher-arity fact harvesting. In:

Proceedings of the 2018 World Wide Web Conference. 2018, 1013–

1022

2. Hassan N, Arslan F, Li C, Tremayne M. Toward automated fact-

checking: Detecting check-worthy factual claims by claimbuster. In:

Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 2017, 1803–1812

3. Mintz M, Bills S, Snow R, Dan J. Distant supervision for relation ex-

traction without labeled data. In: Proceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP. August

2009, 1003–1011

4. Aggarwal C C, Zhai C. Mining text data. Springer Science & Business

Media, 2012

5. Miwa M, Bansal M. End-to-end relation extraction using LSTMs on

sequences and tree structures. In: Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). August 2016, 1105–1116

6. Xu Y, Mou L, Li G, Chen Y, Peng H, Jin Z. Classifying relations via

long short term memory networks along shortest dependency paths. In:

Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing. September 2015, 1785–1794

7. Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, Xu B. Attention-based

bidirectional long short-term memory networks for relation classifica-

tion. In: Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers). August 2016,

207–212

8. Zhang Y, Qi P, Manning C D. Graph convolution over pruned depen-

dency trees improves relation extraction. In: Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing.

October-November 2018, 2205–2215

9. Katiyar A, Cardie C. Going out on a limb: Joint extraction of entity

mentions and relations without dependency trees. In: Proceedings of

the 55th Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers). July 2017, 917–928

10. Christopoulou F, Miwa M, Ananiadou S. A walk-based model on entity

graphs for relation extraction. In: Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics (Volume 2:

Short Papers). July 2018, 81–88

11. Zeng W, Lin Y, Liu Z, Sun M. Incorporating relation paths in neu-

ral relation extraction. In: Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing. September 2017,

1768–1777

12. Suchanek F M, Kasneci G, Weikum G. Yago: A large ontology from

wikipedia and wordnet. Journal of Web Semantics, 2008, 6(3): 203 –

217. World Wide Web Conference 2007Semantic Web Track

13. Zhou D, Zhong D, He Y. Biomedical relation extraction: from binary

to complex. Computational and mathematical methods in medicine,



Front. Comput. Sci.
17

2014

14. McDonald R, Pereira F, Kulick S, Winters S, Jin Y, White P. Simple al-

gorithms for complex relation extraction with applications to biomedi-

cal IE. In: Proceedings of the 43rd Annual Meeting of the Association

for Computational Linguistics (ACL’05). June 2005, 491–498

15. Li J, Sun Y, Johnson R J, Sciaky D, Wei C H, Leaman R, Davis A P,

Mattingly C J, Wiegers T C, Lu Z. Biocreative v cdr task corpus: a

resource for chemical disease relation extraction. Database the Journal

of Biological Databases & Curation, 2016, 2016: baw068

16. Peng Y, Wei C H, Lu Z. Improving chemical disease relation extraction

with rich features and weakly labeled data. Journal of Cheminformat-

ics, 2016, 8(1): 53

17. Verga P, Strubell E, McCallum A. Simultaneously self-attending to all

mentions for full-abstract biological relation extraction. In: Proceed-

ings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Tech-

nologies, Volume 1 (Long Papers). June 2018, 872–884

18. Cui L, Wei F, Zhou M. Neural open information extraction, 2018

19. RESHADAT V, HOORALI M, FAILI H. A hybrid method for open

information extraction based on shallow and deep linguistic analysis.

Interdisciplinary Information Sciences, 2016, 22(1): 87–100

20. Reshadat V, Faili H. A new open information extraction system using

sentence difficulty estimation. COMPUTING AND INFORMATICS,

2019, 38(4)

21. Sun M, Li X, Wang X, Fan M, Feng Y, Li P. Logician: A unified end-

to-end neural approach for open-domain information extraction. In:

Proceedings of the Eleventh ACM International Conference on Web

Search & Data Mining. 2018

22. Chen Y, Xu L, Liu K, Zeng D, Zhao J. Event extraction via dynamic

multi-pooling convolutional neural networks. In: Proceedings of the

53rd Annual Meeting of the Association for Computational Linguis-

tics and the 7th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers). July 2015, 167–176

23. Blunsom P, Freitas d N, Grefenstette E, Hermann K M. A deep ar-

chitecture for semantic parsing. In: Proceedings of the ACL 2014

Workshop on Semantic Parsing. 2014

24. Liang C, Berant J, Le Q, Forbus K D, Lao N. Neural symbolic ma-

chines: Learning semantic parsers on Freebase with weak supervision.

In: Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). July 2017, 23–

33

25. Wang Y, Berant J, Liang P. Building a semantic parser overnight. In:

Proceedings of the 53rd Annual Meeting of the Association for Com-

putational Linguistics and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long Papers). July 2015,

1332–1342

26. Xiao C, Dymetman M, Gardent C. Sequence-based structured predic-

tion for semantic parsing. In: Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Pa-

pers). August 2016, 1341–1350

27. Berant J, Chou A, Frostig R, Liang P. Semantic parsing on Freebase

from question-answer pairs. In: Proceedings of the 2013 Conference

on Empirical Methods in Natural Language Processing. October 2013,

1533–1544

28. Hershcovich D, Abend O, Rappoport A. A transition-based directed

acyclic graph parser for UCCA. In: Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). July 2017, 1127–1138

29. Zhu X, Sobihani P, Guo H. Long short-term memory over recursive

structures. In: Bach F, Blei D, eds, Proceedings of the 32nd Interna-

tional Conference on Machine Learning. 07–09 Jul 2015, 1604–1612

30. Tai K S, Socher R, Manning C D. Improved semantic representations

from tree-structured long short-term memory networks. In: Proceed-

ings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Lan-

guage Processing (Volume 1: Long Papers). July 2015, 1556–1566

31. Agerri R, Rigau G. Robust multilingual named entity recognition with

shallow semi-supervised features. Artificial Intelligence, 2016, 238:

63–82

32. Aguilar J, Beller C, McNamee P, Van Durme B, Strassel S, Song Z,

Ellis J. A comparison of the events and relations across ace, ere, tac-

kbp, and framenet annotation standards. In: Proceedings of the Second

Workshop on EVENTS: Definition, Detection, Coreference, and Rep-

resentation. 2014, 45–53

33. Girju R, Nakov P, Nastase V, Szpakowicz S, Turney P, Yuret D.

Semeval-2007 task 04: Classification of semantic relations between

nominals. In: Proceedings of the 4th International Workshop on Se-

mantic Evaluations. 2007, 13–18

34. Hendrickx I, Kim S N, Kozareva Z, Nakov P, Ó Séaghdha D, Padó

S, Pennacchiotti M, Romano L, Szpakowicz S. Semeval-2010 task 8:

Multi-way classification of semantic relations between pairs of nomi-

nals. In: Proceedings of the Workshop on Semantic Evaluations: Re-

cent Achievements and Future Directions. 2009, 94–99

35. Wang Y, Liu X, Shi S. Deep neural solver for math word problems. In:

Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing. September 2017, 845–854

36. Wang L, Zhang D, Zhang J, Xu X, Gao L, Dai B T, Shen H T.

Template-based math word problem solvers with recursive neural net-

works. In: The Thirty-Third AAAI Conference on Artificial Intelli-

gence. 2019, 7144–7151

37. Zeng D, Liu K, Chen Y, Zhao J. Distant supervision for relation ex-

traction via piecewise convolutional neural networks. In: Proceedings

of the 2015 Conference on Empirical Methods in Natural Language

Processing. September 2015, 1753–1762

38. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Com-

putation, 1997

39. Luong M T, Pham H, Manning C D. Effective approaches to attention-

based neural machine translation. In: Proceedings of the 2015 Confer-

ence on Empirical Methods in Natural Language Processing. Septem-

ber 2015, 1412–1421

40. Cao Y, Li H, Luo P, Yao J. Towards automatic numerical cross-

checking: Extracting formulas from text. In: Proceedings of the 2018

World Wide Web Conference, WWW ’18. 2018, 1795–1804

41. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N,



18
Yixuan CAO et al. Nested Relation Extraction with Iterative Neural Network

Kaiser Ł, Polosukhin I. Attention is all you need. In: Proceedings

of the 31st International Conference on Neural Information Processing

Systems, NIPS’17. 2017, 6000–6010

42. Zeiler M D. Adadelta: An adaptive learning rate method, 2012

43. Huang D, Yao J, Lin C, Zhou Q, Yin J. Using intermediate representa-

tions to solve math word problems. In: Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics, ACL 2018,

Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers. 2018,

419–428

44. Gu J, Lu Z, Li H, Li V O. Incorporating copying mechanism in

sequence-to-sequence learning. In: Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). August 2016, 1631–1640

45. Klein G, Kim Y, Deng Y, Senellart J, Rush A. OpenNMT: Open-source

toolkit for neural machine translation. In: Proceedings of ACL 2017,

System Demonstrations. July 2017, 67–72

46. Zheng S, Wang F, Bao H, Hao Y, Zhou P, Xu B. Joint extraction of

entities and relations based on a novel tagging scheme. In: Proceed-

ings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). July 2017, 1227–1236

47. Cao Y, Chen D, Li H, Luo P. Nested relation extraction with iterative

neural network. In: Proceedings of the 28th ACM International Con-

ference on Information and Knowledge Management (CIKM). 2019

Yixuan Cao received the BE degree in

transportation engineering from Tongji

University in 2015 and now is a PhD

student at the Institute of Computing

Technology, Chinese Academy of Sci-

ences. His research interests include

natural language processing and infor-

mation extraction.

Dian Chen received the BE degree in

IoT Engineering from ChongQing U-

niversity in 2016 and now is a PhD

student at the Institute of Computing

Technology, Chinese Academy of Sci-

ences. His research interests focus

on Natural Language Processing, Deep

Learning and Data Mining.

Zhengqi Xu received the BE degree in

remote sensing from Beihang Univer-

sity, China in 2019 and now is an M-

S student at the Institute of Computing

Technology, Chinese Academy of Sci-

ences. His research interests focus on

machine learning, information retrieval

and information extraction.

Hongwei Li received the BE degree in

software engineering from Fuzhou U-

niversity, China in 2015 and now is a

PhD student at the Institute of Comput-

ing Technology, Chinese Academy of

Sciences. His research interests focus

on machine learning, natural language

processing and information extraction.

Ping Luo received the PhD degree in

computer science from the Institute

of Computing Technology, Chinese A-

cademy of Sciences. He is an associate

professor in the Institute of Comput-

ing Technology, Chinese Academy of

Science (CAS). His general area of re-

search is knowledge discovery and ma-

chine learning.


	Untitled.pdf
	FCS-----just accepted(模板） 




