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In recent years, compositional time series (CTS)
prediction has become a widely applied data
analysis method for modeling tactile sequence
data [1], hydrological time series data using a four-
stage algorithm (denoising, decomposition, com-
ponents prediction and ensemble) [2], and daily
and monthly extreme temperature data [3, 4]. In
general, CTS data consists of a sequence of K-
dimensional vectors, each of which contains pro-
portion information for a specific time point [5].

Furthermore, it is required that
∑K

j=1 θi,j = 1.
Thus, the aim of this study is to predict θt based
on {θi}t−1

i=1, which is a common problem in CTS
prediction.

We chose the Chinese college entrance exami-
nation (CCEE) as a real-world application for our
proposed method. Thus, we first revisited earlier
studies on CTS prediction, and found that all pre-
vious methods can be grouped into two classes:
those with data transformation and those with-
out. The first of these classes canceled the con-
straint that the sum of all the components in a
vector must equal 1, transformed the data to un-
constrained vectors, and then adopted traditional
time series analysis methods for prediction [5].
However, this data transformation tended to al-
ter the nature of the original compositional data.
The second class of methods handled CTS data
directly. For example, methods such as CDES [6]
and DRHT [7] independently model the trend of

each dimension of CTS data via a smoothing or
regression method; however, when the CTS data
are volatile, performance was unsatisfactory. In
addition, methods such as VARMA [5] focused on
modeling the correlations between the different di-
mensions of CTS data. However, in real-world ap-
plications, the CTS data usually contain many di-
mensions and few data points.

Observations on different CTS data types. Af-
ter careful study, we find two types of CTS data
produced using different data generation mecha-
nisms. The first of these methods randomly gener-
ates CTS data using latent Dirichlet distribution.
One example of this CTS data type is the dis-
tribution of knowledge test points in the CCEE.
Each year, exam setters craft questions according
to the most recent official exam outline published
by the government. Knowledge points that are
considered “hot” one year may not be considered
“hot” the following year, indicating that internal
regularities or trends in these data may not exist;
however, such regularities and trends may exist in
other types of CTS data (such as economic struc-
ture, population, and social classes). The major
challenge is that internal regularities trends vary
for different CTS data types, which leads to diffi-
culties in accurately representing the data of these
two situations within a single model. Hence, we
first propose two models for these CTS data types:
Dirichlet estimation and probabilistic autoregres-
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sion. Furthermore, we argue that good prediction
performance for both types of CTS data can be
achieved by a amalgamation between these two
models, and thus propose a joint model.

Predicting CTS via Dirichlet estimation. We
will now focus on our proposed method of predict-
ing θt for the CTS sequence {θi}t−1

i=1 . The first
model is based on Dirichlet estimation and is suit-
able for CTS data that have been generated ran-
domly using latent Dirichlet distribution.

Note that the support for a K-dimensional
Dirichlet distribution is SK−1 = {θ ∈ [0,+∞)K

|θTIK = 1}, where IK = (1, 1, . . . , 1)T. SK−1 is
a (K − 1)-dimensional simplex. Dirichlet distribu-
tion is an exponential family distribution method,
meaning that it has a conjugate prior. Let D(θ;β)
be the probability distribution function (PDF) of
the Dirichlet distribution with the parameters β,
and π(β;d, v) be the exponential family prior dis-
tribution of β with the parameters (d, v). As
Dirichlet distribution can directly model compo-
sitional data, we assume that the observations in
a recent short-term window, namely {θi}ti=t−s,
are generated from a background Dirichlet distri-
bution with the parameters βt. In other words,
we have {θi}ti=t−s∼D(θ;βt) where D(θ;β) =

1
B(β) exp{(β − 1)T lnθ} and s ∈ N+ is the size

of this short-term window.

Furthermore, we denote the prior of βt as π(dt,

vt). Following this, according to the properties of
conjugate prior, we derived the posterior PDF of
βt via the likelihood that, P (βt|{θi}t−1

i=t−s,dt, vt) =

π(βt;dt +
∑t−1

i=t−s lnθi, vt + s) where π(β;d, v) =
r(d,v)
Bv(β) exp{(β − 1)Td}.
However, the hyperparameters dt and vt were

still unknown. Thus, we assumed that dt and
vt were determined via observations in a long-
term time window, namely {θi}t−1

i=t−l, where l ∈
N+ was the size of this long-term window and
l > s. Specifically, βt ∼ π(βt;dt, vt) = π(βt;
∑t−1

i=t−l lnθi, l).

This result was derived as follows: there was
a non-informative prior β0 [8] for the observa-
tions before time point (t − l). Following this,
the posterior of β0 on observations {θi}t−1

i=t−l was

P (β0|{θi}t−1
i=t−l) = π(β0;

∑t−1
i=t−l lnθi, l). Here, we

assumed the posterior of (β0; {θi}t−1
i=t−l) to be the

prior of βt. Thus, βt ∼ π(βt;dt, vt) = π(βt;
∑t−1

i=t−l lnθi, l), and we have dt =
∑t−1

i=t−l lnθi and
vt = l.

The objective Dirichlet estimation function is
as follows: OD(θt,βt) = P (θt|{θi}t−1

i=t−l, l, s) =

D(θt;βt)π(βt;
∑t−1

i=t−l lnθi +
∑t−1

i=t−s lnθi, l + s).

Here, we maximized the above objective func-

tion to the range of θt ∈ SK−1 and βt ∈ R
K
+ [9].

Predicting CTS via probabilistic autoregression.

We now move to the second proposed model, in
which CTS data are generated by internal regu-
larities or trends. First, we adapted an autore-
gressive model for CTS data. Following this, we
converted this autoregressive model into a prob-
abilistic model so that it could be easily com-
bined with the first proposed model. In autore-
gressive model, θt was estimated by using the lin-
ear weighted sum of {θi}t−1

i=t−s. Specifically, let
K × s block matrix Θi = [θi, θi−1, . . . , θi−s+1],
and λ = (λ1, λ2, . . . , λs)

T. Thus,











θt =

s
∑

i=1

λiθt−i + ǫt = Θt−1λ+ ǫt, t > s,

Θt−1λ ∈ SK−1,

(1)

where λ is the autoregressive coefficient vector,
and vector ǫt is the error item.

Following this, the coefficient vector λ was es-
timated by minimizing the error item. This tra-
ditionally assumes that ǫt follows a multivariate
normal distribution N (0,Σ); however, it is diffi-
cult to determine the covariance matrix Σ when
the sequence is short. Here, we assumed that ‖ǫt‖2
∼ N (0, σ2) and it lay within the interval [0,

√
2].

In addition, the L2-norm of ǫt was used for conve-
nience in the following computing, and ‖ǫt‖2 con-
ditional on [0,

√
2], had a truncated normal distri-

bution.
Here, the upper bound on this truncated normal

distribution was
√
2, which was derived as follows:

‖ǫt‖22 =‖θt −Θt−1λ‖22
=θ2

t − 2θT
t (Θt−1λ) + (Θt−1λ)

2

6θ2
t + (Θt−1λ)

2
6 1 + 1 = 2. (2)

This equality holds only if ‖θt‖2 = 1, ‖Θt−1λ‖2
= 1, and θt are orthogonal to Θt−1λ. Hence, the
PDF of ‖ǫt‖2 was as follows:

P (‖ǫt‖2;σ2)=
φ(‖ǫt‖2

σ
)

Φ(
√
2

σ
)− Φ( 0

σ
)
∝ exp

{‖ǫt‖22
−2σ2

}

, (3)

where φ(·) is the PDF of standard Gaussian dis-
tribution, Φ(·) is its cumulative distribution func-
tion, and σ ∈ R+ is a chosen scalar. Given that
ǫt = θt−Θt−1λ, ǫt is the function of λ. Thus, we

have P (‖ǫt‖2;σ2,λ) ∝ exp{ (θt−Θt−1λ)2

−2σ2 }.
Finally, given {θi}t−1

i=t−m−s, we can estimate
both λ and θt by maximizing the following like-
lihood:

OA(θt,λ) =
t
∏

i=t−m

P (‖ǫi‖2;σ2,λ)
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∝ exp

{

(θt −Θt−1λ)
2

−2σ2

}

·
t−1
∏

i=t−m

P (‖ǫi‖2;σ2,λ), (4)

where m is a chosen scalar. Here, as the likelihood
increases, the error terms {‖ǫi‖2}ti=t−m decrease.

Amalgamating Dirichlet estimation and prob-

abilistic autoregression. We have proposed two
models for two CTS data types. For data that are
independently generated by latent Dirichlet dis-
tribution, the method of Dirichlet estimation was
effective. For the data that change under internal
regularities or trends, the method of probabilistic
autoregression was effective.

In order to improve the robustness and efficacy
of our proposed model for unknown CTS data
types, we propose the following joint model, which
was created by multiplying the two objective func-
tions. After some derivation, we have

OD(θt,βt)×OA(θt,λ)

∝ exp

{

(βt − 1)T

[

ln(θt) +

t−1
∑

i=t−l

ln(θi)

+

t−1
∑

i=t−s

ln(θi)

]

− 1

2σ2

t
∑

i=t−m

(θi −Θi−1λ)
2

}

· 1

B l+s+1(βt)
. (5)

The model structure is shown in Figure 1.
Eq. (5) is the final objective function for this joint
model and is called the autoregressive Dirichlet es-
timation (ADE).

(θ̂t, β̂t, λ̂) = argmax
(θt,βt,λ)

f(θt,βt,λ). (6)

 θt−m−s, θt−m−s+1,···θt−s−2 ,  θt−s−1 ,  θt −s,  ···   θt −2,  θt−1

OA(θt , λ)OA(θt , λ)

···

λ

   π(dt, vt)

 θt−l,  θt−l+1,  ···θt−s−2 ,  θt−s−1 ,  θt−s ,  ···   θt −2 ,  θt −1

OD(θt , βt)OD(θt , βt)

···

βt−1βt−2βt− l+s

(b)

(a)

Figure 1 The model structure. (a) The autoregressive
Gaussian estimation for CTS; (b) the probabilistic autore-
gression for CTS.

In (5), the parameter σ controls the importance
tradeoff between the original two objectives. The
autoregression weight increases as 1

2σ2 increases,
and vice versa; therefore, we must set 1

2σ2 higher

for the second CTS data type and lower for the
first CTS data type. The experimental results
demonstrate that we can improve performance of
the proposed model if σ is set according to this
rule.

Experiments. We compared our proposed ADE
model with three state-of-the-art baseline meth-
ods, and prepared two datasets for experiments:
CCEE and world development indicators. The ex-
perimental details are presented in Appendix A.

Conclusion. We first proposed two methods:
Dirichlet estimation and probabilistic autoregres-
sion. Following this, we proposed a joint ADE
model, which is a amalgamation between our orig-
inal two methods. Our experiments demonstrated
the performance of the joint ADE model for dif-
ferent CTS data types.
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