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Abstract

In this study we formulate the problem of conversational
model adaptation, where we aim to build a generative conver-
sational model for a target domain based on a limited amount
of dialogue data from this target domain and some existing
dialogue models from related source domains. This model fa-
cilitates the fast building of a chatbot platform, where a new
vertical chatbot with only a small number of conversation
data can be supported by other related mature chatbots. Previ-
ous studies on model adaptation and transfer learning mostly
focus on classification and recommendation problems, how-
ever, how these models work for conversation generation are
still un-explored.
To this end, we leverage a KL divergence (KLD) regulariza-
tion to adapt the existing conversational models. Specifically,
it employs the KLD to measure the distance between source
and target domain. Adding KLD as a regularization to the
objective function allows the proposed method to utilize the
information from source domains effectively. We also eval-
uate the performance of this adaptation model for the online
chatbots in Wechat platform of public accounts using both the
BLEU metric and human judgement. The experiments empir-
ically show that the proposed method visibly improves these
evaluation metrics.

Introduction

Recently, end-to-end neural systems have made great
progress in various natural language tasks, such as machine
translation (Cho et al. 2014b; Sutskever, Vinyals, and Le
2014), question answering (Yin et al. 2016), and dialog sys-
tems (Gu et al. 2016; Serban et al. 2016; Sordoni et al. 2015).
In general, most of these systems consist of multi-layer RNN
networks with a large number of parameters, thus, they need
a large amount of text data for training. In previous studies
for conversation modeling, plenty of dialogue data is usually
collected from social platforms (such as Weibo (Wang et al.
2013)) or transformed from some public data (Banchs and
Li 2012), which usually covers various vertical domains.

The background of this study is about the building of a
chatbot platform, which contains various chatbots for di-
verse vertical domains, such as entertainment, sports, reli-
gion, etc. To build a vertical chatbot we usually need enough
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dialogue text from the corresponding vertical domain for
end-to-end training. However, when a new chatbot is online
for only a short time the data accumulated for training are
very limited. Thus, we need a solution to address this cold
start problem for new chatbots in a chatbot platform.

To address this data sparsity issue, we formulate the prob-
lem of conversational model adaptation. Specifically, for
the building of a new chatbot, it leverages not only a lim-
ited amount of training data from this target domain, but
also some existing conversational models. Here, the existing
models we consider are trained by the data from open social
platforms (Wang et al. 2013) (considered as the source do-
main), thus they may contain enough language patterns for
the free-chat support.

However, even though the source domain contains enough
data for training a conversational model, its data distribution
might be dissimilar from that in the target domain, as shown
in our quantitative study on the data distributions of source
and target domains (detailed later). Thus, adding the source
domain data directly into the target domain may lead to a
huge drift of data distribution, and result in a conversational
model, which loses the domain-dependent characteristics for
the target domain.

In this paper, we propose a KL divergence (KLD) regular-
ization method for conversational model adaptation. Specif-
ically, we first build a model based on the huge amount of
dialog data from a social platform. Then, the small amount
of target domain data is used to adapt the pre-trained model
to the target domain via KLD regularization. This joint regu-
larization framework prevents the dialog system from over-
fitting to the target domain, and simultaneously makes use of
the information from the source domain. To evaluate the ef-
fectiveness of our method, we use both objective and subjec-
tive measures. Results of experiments show that our method
visibly improves the performance of the existing models
without model adaptation. In summation, our contributions
are three-folds:

• To the best of our knowledge, we are the first to propose
the problem of conversational model adaptation, where
the building of a new vertical domain dialogue system is
supported by both the small amount of target domain data
and large number of source domain data.

• We develop a KLD regularization method to adapt conver-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

5213



0.0 0.2 0.4 0.6 0.8 1.0
u

0.02

0.04

0.06

0.08

0.10

pr
ob

ab
ili

ty
de

ns
it

y
Sim(u;P t,Ps − Ps′)

Sim(u;Ps′,Ps − Ps′)

(a) Input post comparison
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(b) Response comparison

Figure 1: Comparison between the source and target do-
mains

sational models, and the careful evaluation demonstrates
its effectiveness.

• We also stress that the proposed adaptation framework is
agnostic to the methods for conversational modeling. In
other word, it can easily accommodate any end-to-end di-
alogue systems, such as memory networks (Sukhbaatar
et al. 2015), neural encoder-decoder model (Cho et al.
2014b) and so on.

Quantitative Study of Similarity between

Source and Target Domains

In this problem we are given two corpora, source do-
main corpus Ds and target domain corpus Dt. Each cor-
pus is the set of post-response pairs. Namely, D =
{(x, y)|y is the response of post x}. Specifically, Ds is col-
lected from Tencent Weibo, including 1,903,512 pairs, and
Dt is given by a third-party company, including 15,315
pairs.

To study the similarity between the data distributions of
Ds and Dt, we first define the following measure of maxi-
mum cosine similarity between a sentence s and a corpus D,
as follows:

MCS(s,D) = max
s′∈D

(φ(s, s′)) (1)

where φ calculates the similarity between the two sentences.
To compute this similarity, we represent each sentence as a
paragraph vector (Le and Mikolov 2014), and apply the co-
sine similarity on these two vectors. s is closer to the corpus
D when the value of maximum cosine similarity is higher.

We further define the similarity between two corpora, S1

and S2 (the sets of sentences), as a distribution of u:

Sim(u;S1,S2) =
1

|S1|
∑

si∈S1

δ(u = MCS(si,S2)) (2)

where u is a user-specified value in [−1, 1], δ is the Kro-
necker delta function. In other words, the similarity between
S1 and S2 can be represented by the empirical distribution
of Sim(u;S1,S2).

With the definition of Sim(u;S1,S2), we design the fol-
lowing process to show the similarity between data distribu-
tions of Ds and Dt. Specifically, we consider the post sen-
tences and response sentences, respectively. Namely, Ps and
Pt include all the input posts in source and target domain,
respectively. Next, we randomly sample a subset Ps′ of Ps,
such that |Ps′ | = |Pt|. Then, we calculate the following two
distributions,

Sim(u;Ps′ ,Ps − Ps′)

Sim(u;Pt,Ps − Ps′)
(3)

Here, Sim(u;Ps′ ,Ps − Ps′) actually calculates the simi-
larities between the posts in the sampled source domain Ps′

and the remaining data set Ps−Ps′ . Sim(u;Pt,Ps−Ps′)
measures the similarities between the posts in the target do-
main Pt and the source domain Ps − Ps′ . Finally, we can
compare these two distributions to compare the data distri-
butions in Ps and Pt. As shown in Fig. 1(a) these two dis-
tributions are very similar.

Similarly, we can apply the same process to the response
sentences in Ds and Dt. Then, we calculate the following
two distributions,

Sim(u;Rs′ ,Rs −Rs′)

Sim(u;Rt,Rs −Rs′)
(4)

where the set R includes all the response sentences in the
corresponding domain. As shown in Fig. 1(b), these two dis-
tributions are quite different. Thus, responses in the target
domain are dissimilar to responses in the source domain.

To conclude, we observe that the input posts are similar
between the source and target domain. In other words, chat-
bot users may ask similar questions to the two chatbots from
related vertical domains. However, their responses might be
different based on their individual expertise. Therefore, the
dissimilarity between target domain and source domain is
mainly reflected on their responses.

Background and Preliminaries

While this paper mainly introduces the adaptation method
applied to RNN-based encoder-decoder for simplicity, our
adaptation method is suitable for most conversational mod-
els.

RNN-based Encoder-Decoder

RNN-based encoder-decoder can be expressed as a model
maximizing the likelihood of the output sequence given
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an input sequence. Supposed that we have a corpus D =
{(xi, yi)|yi is the response of post xi}, where xi and yi

are two sequences of tokens, a RNN-based encoder-decoder
is typically trained to maximize the likelihood:

L =
1

N

N∑

i=1

logp(yi|xi) (5)

where N is the number of samples in the corpus. A RNN-
based encoder-decoder mainly includes two parts: encoder
and decoder which are implemented as RNNs. The encoder
converts input sequence xi = (xi

1, . . . , x
i
Ti
) to a fixed length

context vector ci, i.e.

hi
t = f(xi

t, h
i
t−1), c

i = ψ((hi
1, . . . , h

i
Ti
)) (6)

where Ti is the length of input sequence xi, hi
t is the hidden

state at time t of encoder sequence, f is a non-linear function
and ψ summarizes the hidden states.

The context vector ci is utilized by the decoder to gener-
ate the output sequence yi = (yi1, . . . , y

i
T ′
i
). There are differ-

ent methods to unfold ci. (Sutskever, Vinyals, and Le 2014)
used ci as the initial hidden state si0 of the decoder and the
function to calculate hidden states of the decoder is:

sit = f(yit−1, s
i
t−1) (7)

where sit is the hidden state at time t of decoder sequence.
While (Cho et al. 2014b) argued that adding ci to the input
of every step helps decoder RNN make use of context infor-
mation and improve performance:

sit = f(yit−1, s
i
t−1, c

i) (8)

With the hidden state sit, the target symbol yit at time t can
be predicted by:

p(yit|yi<t, x
i) = g(yit−1, s

i
t, c

i) (9)

where yi<t represents the history {yi0, . . . , yit−1}, g is a non-
linear function.

In the rest of this paper, RNN refers to the RNN family
including RNN with different structures. LSTM (Hochreiter
and Schmidhuber 1997) and GRU (Cho et al. 2014a) are two
examples and often perform better than vanilla ones.

KL Divergence Regularized Adaptation

Method

Our goal is to train a satisfactory target domain conversa-
tional model using target domain data with the assistance of
source domain data. Combining the target domain data and
the source domain data directly is the most straight-forward
approach. However, target domain data will be overwhelmed
by the source domain data. Training directly with the com-
bined data may lead to a conversation model failing to re-
spond to target domain posts or responding to posts in the
style of the source domain instead of the target domain. An-
other approach is to pre-train the system with the source do-
main data and fine-tune using the target domain data. Al-
though this approach makes use of the target domain data, it

Figure 2: Illustration of KL divergence regularized adapta-
tion method.

may destroy the information extracted from the source do-
main and overfit to the target domain.

To address these problems, We propose a KL divergence
regularized adaptation method as depicted in Fig. 2. Our
method pre-trains the conversation model with source do-
main data and adapts the model to the target domain with
KLD regularization. Using KLD to measure the deviation of
distributions p(y|x) estimated from the source and target do-
main data, we can limit the distance between them to prevent
the target domain distribution from deviating too far from
the source domain distribution. This method helps conversa-
tional models make use of source domain information and
avoid overfitting effectively. To materialize the above pro-
posal, we need to maximize the likelihood of outputs in the
target domain and minimize the KLD between two distribu-
tions simultaneously. Adding the divergence as a regulariza-
tion term, the objective function of our proposed model is
defined as follows:

L = (1− α)
1

N

N∑

i=1

logp(yi|xi)− αDKL(p
S ||p) (10)

where pS is the distribution of the source domain data, α is
regularization weight, DKL is the KLD function:

DKL(p
S ||p) = 1

N

N∑

i=1

M∑

j=1

pS(yj |xi) log pS(yj |xi)

− 1

N

N∑

i=1

M∑

j=1

pS(yj |xi) log p(yj |xi)

(11)

where M is the number of output samples. Since the first
term of Eq. 11 is a constant and unrelated to the model pa-
rameters, we can remove this term and get the regularized
optimization criterion:

L =(1− α)
1

N

N∑

i=1

logp(yi|xi)

+ α
1

N

N∑

i=1

M∑

j=1

pS(yj |xi) log p(yj |xi)

(12)
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The framework of our method is shown in Algorithm 1.

Algorithm 1 KLD REGULARIZED ADAPTATION(Ds,Dt)

Require:
Source domain data, Ds

Target domain data, Dt

Ensure: The parameters of our model, Θ
1: Initialize Θ randomly;
2: Pre-train Θ with Ds by maximizing Eq. 5
3: Calculate the conditional probability pS(y|x) of all pairs in Dt

using the pre-trained model.
4: Fine-tune Θ with Dt by maximizing Eq. 12
5: return Θ;

pS is analogous to the dark knowledge distilled from the
source domain (Hinton, Vinyals, and Dean 2015). The dark
knowledge contains information from source domain. Thus,
we can use it as the soft target. With this supervision, our
model can absorb the knowledge and imitate the distribution
of source domain. The degree of imitation can be controlled
by regularization weight.

The regularization weight α ranges from 0 to 1. When
α = 0, the source domain data has no influence on the
method and only the target domain data is used. On the con-
trary, when α = 1, our adaptation method completely trusts
the source domain distribution and neglects the target do-
main information. The regularization weight α is related to
the size of the target domain data. With a larger target do-
main data size, we can use a smaller value of α.

Experiments

We use RNN-based encoder-decoder with GRU (Cho et al.
2014b) as the basic conversational model and compare our
proposed method with three benchmarks described in the
following subsections. For convenience, we use “adaptation
method” to refer to the KL divergence regularized adapta-
tion method.

Dataset

The dataset includes two parts, source domain data and tar-
get domain data. We collect source domain data from Ten-
cent Weibo using a similar method described in (Wang et
al. 2013). The source domain data includes 1,903,512 pairs
and 26,814 words. For the target domain data, we get 15,315
pairs related to Buddhism from a third-party company. We
randomly divide this data into training, validation and test
set with no overlap posts. In other words, we ensure that
there are no posts appearing in two different sets. The target
domain data has 4,130 words. Table 1 shows the details of
our data.

Benchmarks

We use three methods adopted from the model proposed by
(Cho et al. 2014b) as our benchmarks. In the following sec-
tions, we use the acronym in the brackets to refer them.

• RNN-based encoder-decoder model trained with target
domain data (t-RED).

Table 1: Data statistics
Source domain posts 556,639
Source domain responses 557,169
Source domain pairs 803,716

Training posts 8,921
Training responses 9,467
Training pairs 12,322

Validation posts 1,000
Validation responses 1,286
Validation pairs 1,449

Test posts 1000

• RNN-based encoder-decoder model trained with com-
bined data consisting of source domain data and target
domain data (c-RED).

• Pre-training RNN-based encoder-decoder model with
source domain data and fine-tuning the model with target
domain data (ft-RED).

Experimental Details

We merge dictionaries of two domains and get a combined
dictionary consisting of 27,037 words. We randomly select
300 pairs from the target domain as the test set and the rest
are used for training.

For the RNN-based encoder-decoder model, we use 1-
layer GRU with 512 cells for both the encoder and the de-
coder. Word embeddings are treated separately for the en-
coder and the decoder as suggested in (Shang, Lu, and Li
2015). Embedding dimensions are set to 128. All parame-
ters are initialized with the uniform distribution between -0.1
and 0.1. The activation function we use is maxout which can
effectively avoid overfitting (Goodfellow et al. 2013). We
use Adadelta (Zeiler 2012) in training and a minibatch size
of 128. All RNN-based encoder-decoder models referred in
the experiments use the above settings.

For the adaptation method , we set regularization weight
α to 0.5. According to Eq. 12, we need to traverse all the
responses for every post which greatly prolongs the training
process. In practice, we focus on the response corresponding
to the post in our training set. Thus, we can sample responses
by posts and simplify our objective function as:

L =(1− α)
1

N

N∑

i=1

logp(yi|xi)

+ α
1

N

N∑

i=1

pS(yi|xi) log p(yi|xi)

(13)

Results

We use two evaluation methods to compare the perfor-
mances of our method against those of the benchmarks:
BLEU score (Papineni et al. 2002) and manual evaluation
method (Shang, Lu, and Li 2015). They are commonly em-
ployed metrics to evaluate performances of conversational
models.
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Table 2: BLEU Score
Methods BLEU Score
t-RED 4.36
c-RED 1.35
ft-RED 7.71

Adaptation Method 10.53

Table 3: Manual evaluation examples

BLEU Metric

Table 2 shows BLEU scores of the proposed method and
three benchmarks. We find that our proposed adaptation
method is superior to all three benchmarks. Compared to t-
RED, ft-RED not only makes use of the target domain data,
but also utilizes some information from the source domain.
Thus, it performs better. However, the ft-RED overfits to the
target domain data, so it has lower BLEU score than our
adaptation method.

Additionally, We discover that c-RED performs worse
than t-RED on BLEU score. Because the size of source do-
main data is much larger than that of the target domain, the
target domain data is overwhelmed by the source domain
data when combining. In addition, reference responses used
to calculate BLEU scores are all from the target domain,
which are dissimilar to source domain responses. Thus, the
c-RED has a lower BLEU score than the t-RED.

Manual Evaluation

Referring to (Shang, Lu, and Li 2015), we use manual eval-
uation method to evaluate the models. To prevent human an-
notation bias, we mix generated results of all models up and
let three judges score the same result set. The score ranges
from 0 to 2 indicating bad, normal and good respectively.

• Bad(0): The generated response is not related to the post
or there are some grammatical mistakes in the response.

• Normal(1): The generated response has no grammatical
mistakes and is suitable for the post in some scenarios.
But it may be not the perfect response or may have some
minor deviations from the target domain.

• Good(2): The generated response is free of mistakes and
in line with the target domain data. Additionally, it is a
very satisfying response to the post.

Table 3 shows the manual evaluation examples. The first
example is scored 0 because the response is unrelated to the

post. Because of a grammatical mistake in the second exam-
ple, it is scored 0. The third and fourth examples are both
scored 1 for different reasons. The third example’s response
suits to the post, but it is too general to be a perfect response.
The response of the fourth one has some minor deviations
from target domain, because in target domain the responder
is a robot and has no parents. Thus, it is better to respond
“Robots do not have parents” as given in the fifth example.

The manual evaluation results and several examples of re-
sponses from different models are shown in Table 4 and Ta-
ble 5 respectively. The agreement (Fleiss and others 1971)
is a statistical measure of inter-rater consistency. In Table
4, agreements of all the models range from 0.2 to 0.4. It
indicates that our manual evaluation is “Fair agreement”.
From Table 4, we discover that our method is superior to the
benchmarks. Our conjectured explanation of the improved
performance is as follows, clarified by the examples in Ta-
ble 5.

Firstly, source domain data assists our proposed method
in understanding the posts. From Table 5, we can find that
the t-RED generates high-frequency and unrelated responses
to the posts in the first two examples. This case indicates that
these two posts are not well understood by this method. On
the contrary, c-RED and our adaptation method generate re-
lated and suitable responses which means that the posts can
be better understood with the help of source domain data.
Though the ft-RED makes use of the source domain data, it
overfits to the target domain data and deteriorates informa-
tion extracted from source domain. Therefore, the ft-RED is
not able to respond to posts in the first two examples, but
responds properly to the post in the third example.

Secondly, our proposed method makes use of the target
domain information more effectively. From Table 5 we can
find that most responses generated by c-RED do not match
the style of responses in the target domain. Instead, they
lean toward source domain high frequency responses in the
forms of “It is not XXX at all” and “It is rather you who is
XXX”. On the contrary, our adaptation method generates re-
sponses more aligned with target domain data. This observa-
tion shows that when the size of target domain is far smaller
than that of the source domain, combining the data of two
domains directly leads to source domain data overwhelming
target domain data. On the other hand, our proposed method
is a better way to use the source domain data to assist the
training of conversational models.

There is an inconsistency between BLEU metric and man-
ual evaluation results on c-RED and t-RED. The main reason
is that most suitable responses generated by c-RED are not
in target domain and have little overlapping n-grams with the
reference responses. The fourth example in Table 5 is a typ-
ical case. “Pursue him/her if you like him/her.” is a suitable
response to “Xian Er, what should I do when I fall in love
with someone?”. But there is no overlapping n-grams with
reference responses in the target domain. The t-RED’s num-
ber of suitable responses is lower, but there are more over-
lapping n-grams with reference responses. Thus, although
the c-RED performs better than t-RED according to manual
evaluation, its BLEU score is lower than t-RED.
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Table 4: Manual evaluation results
Methods Mean Score Good(2) Normal(1) Bad(0) Agreement
t-RED 0.318 3.12% 25.5% 71.3% 0.281
c-RED 0.429 5.9% 31.1% 63.0% 0.295
ft-RED 0.484 6.9% 34.6% 58.5% 0.298

Adaptation Method 0.530 7.7% 37.6% 54.7% 0.289

Table 5: Responses examples

Related Work

Our work is mainly related to conversational models and
adaptation and transfer learning methods. Because the basic
frameworks of conversational models come from statistical
machine translation, we include it in this section.

Statistical Machine Translation

RNN-based encoder-decoder is a basic model for end-to-end
systems. It was first proposed in statistical machine trans-
lation (SMT). Sutskever et al. (Sutskever, Vinyals, and Le
2014) used a four-layer LSTM to convert the input sequence
into a fixed length context vector and another multilayered
LSTM to decode the target sequence. In this work, the con-
text vector was only inputted into the first step of the de-
coder. Cho et al. (Cho et al. 2014b) proposed another model
with GRU and feed the fixed length context vector into all
decoding steps. Bahdanau et al. (Bahdanau, Cho, and Ben-
gio 2015) argues that the fixed-length context vector can be
the performance bottleneck of RNN-based encoder-decoder
models. They proposed an attention mechanism to obtain
different context vectors for different steps of the decoder
and achieved better results.

Conversational Models

Inspired by the SMT methods, researchers put forward sev-
eral improved models for conversational models. Shang et
al. (Shang, Lu, and Li 2015) introduced three types of en-
coding schemes as extensions of attention method. They
found that hybrid scheme performs better than the other
two schemes in generating responses. Instead of focusing
on one-round dialog, Sordoni et al. (Sordoni et al. 2015)
built Dynamic-Context Generative Model(DCGM) consid-
ering contexts of dialogs. Serban et al. (Serban et al. 2016)
devised a hierarchical neural network to encode a sequence
of words into an utterance vector while keeping track of the

utterance vector to utilize context information. Serban et al.
(Serban et al. 2017) extended the hierarchical neural net-
work by adding a parallel RNN encoder, which encodes the
high-level coarse tokens, into the previous framework. An-
other method to improve conversational models is to use ac-
tive learning to solve data sparsity issue (Asghar et al. 2017).

Adaptation and Transfer Learning Methods

Adaptation methods are widely used in speech recognition.
(Abrash et al. 1995; Neto et al. 1995; Albesano, Gemello,
and Mana 2000) linearly transformed input features to do
the adaptation. Yao et al. (Yao et al. 2012) performed linear
transformation on the softmax layer. Conservative training
(Abrash et al. 1995) is another category of adaptation. It adds
a regularization to the objective function. L2 (Li 2007) and
KLD (Yu et al. 2013) are two possible regularization terms.
Additionally, adaptation is a special case of transfer learning
methods which are extensively surveyed in (Pan and Yang
2010).

Conclusion

We come up with a problem of building conversational
model for a target domain with scarce training data assisted
by some existing conversational models from source do-
main. Then we propose a KL divergence regularized adap-
tation method which pre-trains the system with the source
domain data and adapts the system to the target domain
with KL divergence regularization. Our method takes ad-
vantage of information in both domains and prevents the
system from overfitting to the target domain. Experiment
results show superior performance of the proposed method
compared to existing conversational models. Additionally,
our method is model agnostic and can be widely used.

For future work, we can incorporate transfer learning
methods. In this paper, all parameters are fine-tuned in the
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adaptation process. It is possible to fix some parameters of
the system and fine-tune other parameters when adapting.
How to incorporate transfer learning in the training of dia-
log systems is an interesting problem for further studies.
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