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ABSTRACT

Verbal descriptions over the numerical relationships among some

objective measures widely exist in the published documents on

Web, especially in the �nancial �elds. However, due to large vol-

umes of documents and limited time for manual cross-check, these

claims might be inconsistent with the original structured data of

the related indicators even after o�cial publishing. Such errors

can seriously a�ect investors’ assessment of the company and may

cause them to undervalue the �rm even if the mistakes are made

unintentionally instead of deliberately. It creates an opportunity for

automated Numerical Cross-Checking (NCC) systems. This paper

introduces the key component of such a system, formula extrac-

tor, which extracts formulas from verbal descriptions of numerical

claims. Speci�cally, we formulate this task as a DAG-structure pre-

diction problem, and propose an iterative relation extraction model

to address it. In our model, we apply a bi-directional LSTM followed

by a DAG-structured LSTM to extract formulas layer by layer it-

eratively. Then, the model is built using a human-labeled dataset

of tens of thousands of sentences. The evaluation shows that this

model is e�ective in formula extraction. At the relation level, the

model achieves a 97.78% precision and 98.33% recall. At the sen-

tence level, the predictions over 92.02% of sentences are perfect.

Overall, the project for NCC has received wide recognition in the

Chinese �nancial community.
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1 INTRODUCTION

Claims over the numerical relationships among some objective

measures widely exist in the published documents on Web. For

example, various �nancial documents (e.g. IPO prospectus, bond

prospectus, corporate annual report etc.) contain large fraction of

verbal descriptions over the �nance indicators of the corporates.

Example 1 in Fig. 1 is such a typical sentence. It describes the amount

of sum of prepayment and other payables for a company at two time

point (the end of 2015 and 2016), and also the share of this sum in

current liability. Also, Fig. 1 includes another two examples of such

verbal descriptions from the �elds of natural sciences (computer

science and meteorology, respectively). All these sentences aim to

verbally describe the “accurate" numerical relationships of some

objective indicators in a quantitative way.

Even though these claims of numerical relationships are pub-

lished o�cially, they might be inconsistent with the structured data

of the indicators, which generate the verbal description. See a real-

world example for this inconsistency in Fig. 2, which is detected

automatically by our proposed system. From the given sentence, we

can get the formula related to the indicators. Note that it is only one

of the formulas which exactly match the semantics of the sentence.

The document, which includes this sentence, also contains a table

of these �nance indicators. Putting these original data from table

into the left side of the formula, we �nd that prepayment and other

payables aggregately constituted 91.13% of current liability in 2015.

This con�icts with the number 93.88% given in the text.

Since the essential requirements for disclosure documents, espe-

cially in the �nancial areas, are “authenticity, accuracy and com-

pleteness", these numerical errors might bring about huge reputa-

tion risk, and even economic losses. In 2011, Goldman Sachs made

one critical typo in several-hundred pages of �lings – wrote “×”

when they wanted “/” . That caused the trading price spiking and

the trading was eventually suspended. This typo resulted in $45

million loss for Goldman1. Recently, in 2016 Postal Savings Bank

of China (PSBC) announced its annual report, in which the total

liability was written to “￥80,000 billion” whereas the actual value

should be “￥8 billion”. The news spread online rapidly and severely

harmed the reputation of PSBC among investors2. Since these dis-

closure documents usually have the force of law, these errors and

typos should be thoroughly removed before publishing.

1http://www.economist.com/node/18744559?story_id=18744559
2http://www.c�.net.cn/p20161223000079.html
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Example 1

Input sentence:

For the years endDecember 31, 2015 andDecember 31, 2016, we had prepayment

and other payables in an aggregate amount of approximately $1,890 million,

$1,743 million, constituted 93.88% and 93.14% of current liabilities, respectively.

Output formulas:

Dec 31, 2015

prepayment
+

Dec 31, 2015

other payables
= $1,890 million 1.1

Dec 31, 2016

prepayment
+

Dec 31, 2016

other payables
= $1,743 million 1.2

*
,

Dec 31, 2015

prepayment
+

Dec 31, 2015

other payables
+
-
÷ Dec 31, 2015

current liabilities
= 93.88% 1.3

*
,

Dec 31, 2016

prepayment
+

Dec 31, 2016

other payables
+
-
÷ Dec 31, 2016

current liabilities
= 93.14% 1.4

Example 2

Input sentence:

�e second part takes 50% of running time in whole algorithm.

Output formulas:

�e second part

running time
÷ whole algorithm

running time
= 50% 2.1

Example 3

Input sentence:

In the period from 1880 to 2012, the global average (land and ocean)

surface temperature has increased by 0.85 [0.65 to 1.06] ℃.

Output formulas:

1880

global average

surface temperature

−
2012

global average

surface temperature

= 0.85 ℃ 3.1

Figure 1: Examples of sentences and their formulas.

2014 2015 2016

(in millions)

Prepayment $1,134 $1,047 $952

Other Payables $782 $843 $791

Current liability $2,105 $2,074 $1,872

Year Ended December 31,

x

 inconsistent

( $1,047 million  +  $843 million  )  ÷    $2,074 million   =  91.13%

For the years end December 31, 2015 and December 31, 2016, 
we had prepayment and other payables in an aggregate amount 
of approximately $1,890 million, $1,743 million, constituted 
93.88% and 93.14% of current liabilities, respectively.

Text

Table

Figure 2: Numerical Cross-Checking detects inconsistency

between verbal description and original data.

It well documented in �nance literature that information in the

disclosure documents is always one of the greatest concerns to

the investors. Lawrence [14] shows that individual investors invest

more in �rms with clear and concise �nancial disclosure, since such

disclosures reduce individuals’ relative information disadvantage.

Choudhary et al. [7] point out that even immaterial errors in the

documents contain information about �rm’s �nancial reporting

reliability. Hence, accounting errors may cause the investors to lose

trust in the �rms reporting quality, and decrease investments in

these �rms. Besides, investors’ attention to the accounting errors

can lead to damage to �rms’ reputation.

To this aim, there is a special job called “authorized reading"

to conduct Numerical Cross-Checking manually. Since the original

data tables are updated frequently during writing, the �rst draft of

disclosure often contains many data-inconsistency errors. Based

on user interview of 10 Chinese investment bankers, on average

it takes one employee with 3-year work experiences one week for

the task of cross-check over a 500-page document. Additionally,

there is usually a hard deadline to publish the disclose documents,

thus the time left for cross-check is limited. More importantly,

conducting cross-check for a long period of time de�nitely induces

fatigue, tiredness, and carelessness. Thus, even after manual cross-

check, these data-inconsistency errors are still inevitable due to the

large volumes of documents, frequent updates of the original table,

limited time for cross-check, and largely the fatigue resulted from

this intellectually demanding, laborious, time-consuming process.

Therefore, this challenge creates an opportunity for automated

Numerical Cross-Checking (NCC) systems. As there is simply no

existing system that truly does this automatically, NCC technology

is clearly falling behind. There are some related systems developed.

ClaimBuster [10] is a fact-checking system that aims to automati-

cally check important factual claims, especially claims in political

discourses. Technically, it focused on detecting check-worthy fac-

tual claims while the other two components of matching claims

and checking claims are still ongoing. Currently, it cannot sup-

port precise cross-check over numerical indicators. StatCheck [20]

uses rule-based program to check inconsistency errors in the null-

hypothesis signi�cance testing, presented in the academic papers in

major psychology journals. It �nds that one in eight papers contains

a grossly inconsistent p-value that may have a�ected the statistical

conclusion. While the relevant tools and techniques can assist this

task in various steps, a full-�edged, end-to-end solution to NCC

does not exist.

To �ll this gap, w e are building an end-to-end system for computer-

assisted Numerical Cross-Checking which uses machine learning,

natural language processing, and database query techniques to

automate this task. It expects a �nancial document as input and de-

tects all potential con�icts in numerical relationships, where Fig. 2

is a typical example output by this system. In an evaluation over

1,000 o�cially published Chinese prospectus, our system found that

68.92% of them contain data-inconsistency errors, and on average

each document with inconsistency has 4.26 errors (con�rmed by

professionals’ re-check).

The system has three major components: formula extraction

(extract numerical relationships from text), table extraction (extract

data from tables), and consistency checking. While the improve-

ment of the full-�edged system is still ongoing, in this paper we

focus on the key component of the system, formula extractor, which

extracts formulas from verbal descriptions of numerical claims.



Dec 31, 2015 prepayment other payables current liabilities 93.88%

@

prepayment
@ Dec 31, 2015

@

other payables
@ Dec 31, 2015

@

current liabilities
@ Dec 31, 2015

+

prepayment
@ Dec 31, 2015

+ other payables
@ Dec 31, 2015

÷

(

prepayment
@ Dec 31, 2015

+ other payables
@ Dec 31, 2015

)

÷ current liabilities
@ Dec 31, 2015

=

(

prepayment
@ Dec 31, 2015

+ other payables
@ Dec 31, 2015

)

÷ current liabilities
@ Dec 31, 2015

= 93.88%

Figure 3: The illustration of iterative relation extraction by

example (Formula 1.3 in Fig. 1).

Given the plethora of discourses and narratives exposed on Web,

this component extracts the formulas, which are semantically ex-

pressed by the claim sentences. Fig. 1 shows some typical examples

of input and output of this component. This is essentially the key

step to automate the cross-check process.

We propose an iterative relation extraction (IRE) model to extract

formulas from text. Fig. 3 illustrates how Formula 1.3 in Fig. 1 is

converted into a directed acyclic graph (DAG) structure. In this

graph each node refers to a binary relation, whose type can be any

computation relation (say +,−,×,÷ etc.) or any compare relation

(say =, <, > etc.). The two operands for a relation can be entities

(see the leaves in the bottom), or the relations at the lower layers.

See the node in the red solid rectangle as an example. It is a relation

of ÷with two operands at the lower layers. Its left operand refers to

the node with a + relation, representing the sum of prepayment and

other payables (at the end of 2015), while its right operand refers to

a “@” node 3, representing the value of current liability at 2015 year

end. In this case the two operands are both the relations generated

at the lower layers. Also, see the root node with a “=” relation,

with the left operand of “÷” and the right one of the leaf entity

93.88%. This root node actually represents the whole formula. Thus,

any formula can be represented as DAG, in which each internal

node has two children and the nodes at the lower layers can be

the children of the nodes at the upper layers. It means that the

relations generated at the lower layers can be recursively used as

the operands of some new relations at the upper layers. This is why

we call this process iterative relation extraction.

Previous studies of relationship extraction mostly focus on the

relations among entities, thus they only perform relationship ex-

traction for a single layer. In the proposed IRE model, it extracts

relations from bottom to top iteratively until a formula is generated

�nally. In this process the resultant relations extracted at the lower

layers can be used as the input of the relationships at the upper

3The meaning of@ will be detailed in Section 2

layers. In this way, the layer-by-layer iterative computing process

generates the ultimate formula.

In this paper we develop the neural-based method for IRE. In

this model we consider the sequential information in two direc-

tions, namely horizontally and vertically. In horizontal direction

we consider the word sequence of the original input sentence. In

vertical direction we model the sequences from leaves to root in

the DAG for formula generation. Specially, we use two di�erent

LSTM modules to model the sequential information in these two

directions so that the building of a relation depends on not only the

relations generated earlier, but also the semantics embedded in the

original sentence. Finally, the model is trained on a labelled dataset

of tens of thousands of sentences, which are collected from Chinese

public �nancial documents. The evaluation result shows that our

model archives at 97.78% precision and 98.33% recall at relation

level. And on 92.02% of sentences, it predicts the formulas without

any mistakes. Additionally, to accelerate the training process, two

techniques are developed: parallel by layer and parallel by batch.

With these two techniques the average training time for one epoch

speeds up more than 5 times. These techniques might shed some

light on speeding up models with tree or DAG structure inputs.

Last but not least, our study makes contribution to the mea-

surement error problem in the proxies of accounting errors and

reporting bias by introducing more precise proxy of accounting er-

rors. This problem is currently a big concern and remains unsolved

in the literature. Researchers tend to rely on restatement data to

construct proxies for accounting errors, and focus on examining the

possible reasons and consequences of these errors. However, there

exists measurement error problem in the existing proxies, which is

caused by the limited sample size of restatement data [8]. The errors

undetected or detected but untracked by the restatement data can

lead to underestimating the incidence of accounting errors. With

NCC system, we are able to �nd out errors in a much larger scope

of disclosure documents, which makes us to estimate accounting

errors more precisely.

The rest of the paper is structured as follows: Section 2 gives

a de�nition of formula and its structure. Section 3 describes our

iterative relation extraction model. Then we evaluate our model

in Section 5, summarize related work in Section 6 and conclude in

Section 7.

2 STRUCTURE OF FORMULAS IN TEXT

In this section we will �rst de�ne the structure of one formula, then

extend that to the structure of all formulas in one sentence, and

�nally discuss the characteristics of the structure. The discussion

in this section is based on Fig. 4. Notice that Fig. 3 is a subgraph

of Fig. 4 (nodes with solid border). And we use the operator to

represent each relation instead of long expression for brevity.

2.1 Structure of One Formula

Intuitively a formula is a formatted expression about something

equal, or greater / less than another thing. For example, revenue

at 2017 equals some amount of money; the growth rate of revenue

from 2016 to 2017 equals a number. A formula is constructed by

components including entities and relations. We will introduce

these components �rst and then de�ne the structure of a formula.
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Figure 4: Structure of formulas from Example 1 in Fig. 1.

Entity. In the bottom row of Fig. 4, the gray boxes are the basic

components of formula: entities. An entity is a single word or a

phrase that participate in a formula. We de�ne three types of enti-

ties in �nancial text: time entities like “January 31, 2015”, �nance

indicator like “revenue”, “current liabilities”, and values like “$166.0

million”, “93.88%”. Time and value entities are extracted by hand-

crafted regular expressions. Finance indicators are prede�ned in a

large whitelist maintained by �nancial specialists. We extract them

by matching the whitelist. From now on we assume these three

types of entities are given.

Relation. From Layer 1 to layer 4 in Fig. 4, we see patterns that

two nodes in lower layer point to one node in upper layer. That

structure is called relation.

De�nition 2.1. Relation. A relation consists of three parts: left

operand cl , right operand cr , and operator o:

r : (cl ,o, cr ) (1)

where each operand c∗ could be an entity or another relation, and

o is an operator like “+” chosen from a prede�ned operator set.

Notice on two things. First, the de�nition of relation is recursive:

the two operands of a relation can be other relations. Second, the

left operand and the right operand are not commutative (a − b is

clearly di�erent with b − a). Although some operators such as “+”

and “=” are commutative mathematically, we make rules to force

all operators to be non-commutative. For example, in Fig 4, r41
has two operands r31 and 93.88%. The �rst word in r31 “Dec 31,

2015" appears earlier than 93.88% in sentence. We set the rule that

(r31,=, 93.88%) is a valid relation, however (93.88%,=, r31) is not.

Operator @ connects an indicator with the time it refers to. The

left operand of @ must be an indicator and the right operand must

be a time. Otherwise the relation is not valid.

In this study the used relations are divided into two categories:

arithmetic and comparison.

Arithmetic relation. An arithmetic relation is a relation with

an arithmetic operator from set Oa : {@,+,−,×,÷}. An arithmetic

relation describes a component of a formula. For example, r11 :

(prepayment ,@,Dec31, 2015) describes an indicator at 2015, r21 :

(r11,+, r12) describes a summation of two indicators in 2015. All

the arithmetic relations will be used as operands of the relations in

higher levels. Thus, we call them intermediate nodes.

Comparison relation. A comparison relation is a relation with

a comparison operator from setOc : {=, >, <}. A comparison makes

a statement and cannot be an operand of another relation. For

example, r41 states r31 equals 93.88%. Since the comparison relations

will not be used as the operands of other relations, we call them

terminal nodes.

Using the de�nitions above, a formula is a structure consisting

of relations and entities. With one comparison at the top, all the

descendants, including arithmetic relations and entities, construct

a formula.

2.2 Formulas in a Sentence

But one sentence might express multiple formulas whose structures

are entangled together. This makes the structure of all formulas in

a sentence more complex in several ways.

First, The structure of formulas in one sentence might has multi-

ple roots, such as Fig. 4 illustrated. Second, one entity or relation

could point to multiple relations, that is, the same occurrence of en-

tities and relations can be reused multiple times by other relations.

For example, “Dec 31, 2015" is the right operand of r11, r12, and r13;

r21 is the left operand of both r31 and r33.

Layer. The structure is also layered. The dotted lines groups

relations by layer. A layer of relations is all relations that have the

same layer number. The layer number of a relation r : (cl ,o, cr ) is

de�ned as l (r ) = max(l (cl ), l (cr )) + 1. We set l (c∗) = 0 if c∗ is an

entity.

From the de�nition and analysis above, the structure of formulas

in one sentence has the following characteristics:

(1) a formula is de�ned in a recursive way from the bottom com-

ponents: time, indicator and values, through several layers

of nested relations, to a comparison;

(2) it may have multiple roots;

(3) relations and entities could be reused; and

(4) every relation has two ordered operands and one operator.

The �rst three characteristics match exactly with the DAG (Directed

Acyclic Graph) structure. The fourth characteristic constrains the

DAG to an ordered, binary DAG, where each node is associated

with an operator. Here the ordered binary DAG means that every

node has exactly two non-commutative children.

Therefore, the problem of extracting formulas in a sentence is

de�ned as extracting the ordered binary DAG structure of formulas.

3 FORMULA EXTRACTION

Motivated by the recursive property of formula, we come up with

an iterative relation extraction (IRE) model to extract formulas layer

by layer iteratively, from bottom to top. In this section, we �rst

give an overview of our model. Then, we dive into all the modules,

including the embedding, Bi-LSTM, and DAG-LSTM modules, to

introduce the details.



3.1 Framework of IRE Model

The key idea of the IRE model is extracting relations layer by layer

iteratively. It extracts one layer of relations by �rst generating

relation candidates and then doing binary classi�cations. When it

terminates, the nodes with positive labels from all layers constitute

the formulas. The process is as follows.

Store the extracted time, indicator and value entities in setsT , I ,V

respectively. Let operator set O = {@,+,−,×,÷, >, <,=}. Use set

N to record the nodes in the DAG structure. At the beginning,

N = T ∪ I ∪V .

First layer. First, generate all the possible candidates:

C = {(n1,o,n2) |n1,n2 ∈ N ,o ∈ O } − N . (2)

Then, predict all candidates inC . Suppose the nodes with positive

labels are N+1 , update N = N ∪ N+1 .

Repeat. Afterwards, we repeat the process in the the �rst layer,

where at layer i the candidate set is generated using Eq. 2, but with

updated N . Note that for a candidate of layer i , the operands come

from N , which includes relations and entities of all lower layers

k,k < i . The process terminates when there is a layer j, Nj = ∅,

and N contains the extracted structure of formulas.

In our work, we constrain that the �rst layer only contain the re-

lations of “@”, and all the other layers do not include “@” relations.

Algorithm 1Model framework

Extract time entities T , indicator entities I , and value entities V .

Use subscript a for arithmetic operator or relation, c for compar-

ison operator or relation.

Operators Oa = {@,+,−,×,÷}, Oc = {>, <,=}

Entities and arithmetic relations Ra = T ∪ I ∪V

Comparison relations Rc = ∅

repeat

Ca = {(r1,o, r2) | r1, r2 ∈ N , r1 , r2,o ∈ Oa } − N

Cc = {(r1,o, r2) | r1, r2 ∈ N , r1 , r2,o ∈ Oc } − Rc
R+a = predict(Ca ); R

+

c = predict(Cc )

Ra = Ra ∪ R
+

a ; Rc = Rc ∪ R
+

c

until R+a = ∅

return Ra ∪ Rc

Algorithm 1 describes this process in detail. And we demonstrate

this process by an example in Fig. 5. The input sentence is shown at

the bottom. At each layer, the bottom row includes current entities

and relations, and boxes above them are candidates. Each column (in

the dotted rectangle) contains all operators between two operands

(we only draw arrows on the operator “−” for brevity). Black arrow

connects relation with its left operand, while red with the right

operand. Positive candidates are highlighted in green. And the

dashed arrows from the green boxes show that these nodes will be

used as the operands in the higher layers. The process terminates

after Layer 3 since no arithmetic candidates are positive, and thus

no more candidates could be generated further.

In our work, the predict function is a neural network consists

of three modules (Fig. 6): embedding module, Bi-LSTM module

and DAG module. In the horizontal direction, the embedding mod-

ule embeds words into high dimensional dense vectors, and the

Bi-LSTM module informs each word its context. In the vertical

Layer 3

Layer 2

Layer 1

In  2012, tax payables constitutes 20% of total liabilities.
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Figure 5: The framework of IRE, illustrated by an example.
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Figure 6: Our iterative relation extraction model. Overview

on left and details of DAG-LSTM unit on right.

direction, the DAG-LSTM module extract relations iteratively from

leaves to roots. All these three module are trained together and their

parameters are updated simultaneously. The details are described

below.

3.2 Embedding module and Bi-LSTM module

The embedding module contains a look-up table that maps each to-

ken in a sentence to a distributional representation: (e1, e2, ..., en ) =

E (w1,w2, ...,wn ). Since each ei is isolated from each other, we feed

them into a Bi-LSTM network to connect them together. For each

wi , Bi-lSTM concatenates the hidden states of forward and back-

ward uni-directional LSTMs as its hidden state hi . We can assume

that hi contains long-term and short-term context information of

wi [9, 22], which make the next step, namely growing the DAG

structure from each token’s hidden state, possible.



3.3 DAG-LSTM module

In this paper, we consider only one type of DAG structure – ordered

binary DAG. It can be to extend to other types of DAG [25].

We introduce this module by the feed-forward process, the pro-

cess to predict formulas in a sentence. The key idea is to predict one

layer a time iteratively which has been discussed in Algorithm 1.

Now we focus on the DAG computation part.

Operator Emedding. The operator is a very important compo-

nent of a relation. For example, a division relation between two

revenues might be compared with a fraction or percentage later,

but should not be compared with some amount of money. On the

contrary, if you only know two revenues have a relation, the in-

formation is ambiguous. Since entities are representing by hidden

states, we make a special embedding matrix Eo to embed each op-

erator o into a distributional representation ot = Eo (o). Eo will be

updated simultaneously with other parameters during training.

DAG-LSTM Unit. During the process of iteratively generating

and classifying, for each candidate, we want to embed all informa-

tions of that candidate into a hidden state. Then the hidden state can

be used for classi�cation, or as the representation of that candidate

to be operand of other candidates. So we use the hidden states of

operands and the embedding of operator to compute a candidate’s

hidden state. And LSTM is well suited to this work.

The input for a relation candidate rt = (l ,o, r ) includes the

hidden state hl of the left operand , hr of the right operand, and an

embedding ot of the operator. The following equations compute

the hidden state of rt :

it =σ (Wiot +Ui [hl , hr ] + bi )

f rt =σ
(

W r
f
ot +U

r
f
[hl , hr ] + b

r
f

)

f lt =σ
(

W l
f
ot +U

l
f
[hl , hr ] + b

l
f

)

ot =σ (Woot +Uo [hl , hr ] + bo )

ĉt = tanh (Wcot +Uc [hl , hr ] + bc )

ct =f
r
t ⊙ cr + f

l
t ⊙ cl + it ⊙ ĉt

ht = tanh(ct ) ⊙ ot

(3)

where σ denotes the logistic function, ⊙ denotes element-wise

multiplication,W , U and b are weight matrices and bias vectors,

and subscripts i, f ,o, c indicate di�erent parameters. Convention-

ally we call it , ft , and ot as input, forget, and output gate.

This computation inherits the spirit of sequential LSTM which

uses memory cells and gates to transfer long-term information. The

di�erence is that we use two separate forget gates for the left child

and right child respectively [25, 29] .

To do classi�cation, we apply a linear transformation followed

by softmax function on ht : st = softmax(Wsht ), to predict whether

the node is positive or not.

Our method fuse the information of operator into the output

hidden vector, and use an universal binary classi�cation for all

operators. This approach should alleviate the subsequent relation

extractions in the following layers. There is another approach that

only use operands to compute the hidden state, and feed that hidden

state to a binary classi�cation speci�ed by o. The idea behind our

approach is that by fusing the information of the children with

the information of the operator explicitly, we allow the operator

information to be transferred throughout the DAG structure by

hidden states.

Tracking hidden states. To put all the DAG-LSTM units in one

sentence together, we keep a matrix H to stores all nodes’ hidden

state. First, H records all hidden state of tokens returned from

Bi-LSTM. Then, iteratively, after predicting all candidates in one

layer, the hidden states of positives are appended to H and become

available for the subsequent relations. Saving only the hidden states

of the previous layer is not enough because a relation can have

operand from any lower layers.

Go through the process by an example in Fig. 5. At the be-

ginning of DAG-LSTM, we have H=[h1(In), h2(2012), h4(,), h5(tax

payables),h6(constitutes),h7(20%),h8(of),h9(total liabilities),h10(.)].

At layer 1, there are two candidates c1:(tax payables, @, 2012),

c2:(total liabilities, @, 2012). For the �rst one, using h5, h2, Eo (@) as

input, compute the hidden state and classify. The same process for

the second candidate. Assume we predict them as positives. Then

we append h11(for c1), h12(for c2) to H .

At layer 2, many candidates are generated but their operands

are r1 (c1 in layer1), r2 (c2 in layer1) and 20%. We get their hidden

vectors h11,h12,h7 from H respectively and compute the hidden

vectors of candidates and classify. Assume only c3 : (r1,÷, r2) is

positive. We append its hidden vector h13 to H .

At layer 3, all the hidden vectors required are h11,h7,h12,h13.

Only c4 : (20%,=, r3) is positive. We append its hidden vector h14 to

H . Since no arithmetic relations are positive, the process �nishes.

4 TRAINING AND SPEEDUP

4.1 Data Preparation and Loss Function

During training, we have the ground truth data: the DAG structure

of formulas. These are positive nodes in DAG. Other possible rela-

tion candidates are negative nodes. If we train a model to predict

all candidate nodes correctly, we could ensure that the model will

extract all formulas from sentence correctly. Therefore, these pos-

itive and negative nodes are enough to train a reliable model for

prediction.

The loss function is de�ned as the overall cross entropy. Suppose

all sentences we have are S . Each sentence si have a candidate

set Ci that includes both positive and negative relation candidates

in the DAG. Ci contains ni candidates: ci1, ..., c
i
ni
. Their labels are

yi1,y
i
2, ...,y

i
ni
, and the probabilities of being positive from model

are p (ci1),p (c
i
2), ...,p (c

i
ni
). Then the loss function is:

L = −
∑

s i ∈S

∑

c ij ∈C
i

yij log(p (c
i
j )) + (1 − yij ) log(1 − p (c

i
j ))

4.2 Speedup

The slow training speed is a bottleneck for the development of

neural networks with complex input structure like our model. Es-

pecially, current implementations compute one example at a time

which is poorly suited for GPU computation [5]. We propose meth-

ods that parallelize computation inside one sentence by layer, and

parallelize among sentences. They are shown in Fig. 7.

One sentence might have thousands of relation candidates. The

computed hidden state of one relation or entity might be the input
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Figure 7: Parallelization methods.

of another relation. So during training, we regard all candidates in

one sentence as one example and compute them in one pass.

Parallel by layer in one sentence. As Fig. 5 shows, all candi-

dates in the same layer share the same hidden states from lower

layers. Therefore, one layer of candidates can be computed in par-

allel.

Parallel by layer and batch Most current implementations of

tree-LSTM in Theano or Torch have to compute one example at a

time 4. Besides computing all candidates in the same layer in one

sentence at a time, we compute all candidates in the same layer for

all sentences in a batch in parallel.

5 EXPERIMENT

5.1 Data and settings

We collected a dataset consisted of tens of thousands of labelled sen-

tences. Since understanding �nancial text requires domain knowl-

edge, we trained several people to construct this dataset. Each

sentence is labelled by three people to minimize the labelling er-

rors. Fig. 8 gives some statistic about our dataset. Distributions of

sentences with regard to number of words, relations, formulas, can-

didates and layers are shown in a) to e). Most sentences have 20-40

words, less than 50 relations, less than 10 formulas, up to hundreds

of candidates, and 2 to 5 layers. But some sentences have more than

200 words, hundreds of relations, and thousands of candidates. Sub-

�gure f) depicts the number of relations of each operator. “@”, “=”,

and “÷” are the most common operators where “+”, “>” are about

ten times rarer than them. The operators are very imbalanced. And

the di�erence between the number of candidates and relations also

indicates the imbalance between positive and negative samples.

The model is implemented in Theano [26]. We only keep 3500

most frequent tokens and the rest are represent by a special UN-

KNOWN token. We also assign each type of entities (time, value,

and indicator) a special token. The word embedding size is 128.

Bi-LSTM doubles the size of hidden state of each token. And the

hidden size of relation is also 256. We use Adadelta [27] as our

optimizer. The batch size is 16.

4https://github.com/stanfordnlp/treelstm
https://github.com/dasguptar/treelstm.pytorch
https://github.com/o�rnachum/tree_rnn
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Table 1: Results (%) on test set, with or without operator em-

bedding.

Relation Formula Sentence

P R F1 P R F1 accuracy

With 97.78 98.33 98.06 96.53 96.45 96.49 92.02

Without 97.28 97.17 97.23 97.17 94.58 95.84 87.88

From the collected data we �nd descriptions about “growth rate”

are popular. If we only use {+,−,×,÷}, they require two relations.

To reduce the layer number, we add special operators “ր”, a ր

b = (b − a)/a. Similarly, we add “ց” for “decline rate”.

5.2 E�ective evaluation

We evaluate the result in several ways to the performance at di�er-

ent levels. At relation level, we calculate the precision (P), recall (R),

and F1-score (F1). At formula level, we also report these metrics

where precision is de�ned as (number of formulas we predict cor-

rectly) / (number of formulas in ground truth). At sentence level,

we calculate accuracy, the percentage of sentences whose formulas

are all correctly extracted. The relation and sentence level metrics

are more directly related to user experience for NCC.

To evaluate the e�ectiveness of our model, we compare it with a

model that does not fuse the operator embedding into the hidden

vector. That means when computing hidden vectors of one relation

in Equation 3, we omit the (W · ot ) term. The evaluation result

in Table 1 shows that using operator embedding will improve the

model performance, especially at formula and sentence level. Model

with operator embedding predicts correctly on 92.02% of sentences,

which is a very promising result.

Moreover, we analyze the model performance with regard to the

number of words, formulas, relations, etc. which showed similar

patterns. Fig. 9 illustrates the performance with regard to the num-

ber of relations in a sentence. Sentences are grouped by relation

number. Blue solid line is the sentence level accuracy on di�erent

groups. Red dashed line is the percentage of sentences in that group

in test data. There is a trend that the model is prone to make more

errors on sentences with more relations (long sentences). There

https://github.com/stanfordnlp/treelstm
https://github.com/dasguptar/treelstm.pytorch
https://github.com/ofirnachum/tree_rnn
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are two possible reasons: long sentences are hard intrinsically, and

long sentences are relatively rare in training data. Only 1.24% of

sentences have more than 40 relations, but the average accuracy

in these groups is around 60%, which is still a non-trivial result

(accuracy drops sharply for sentences with more than 50 relations,

but there are only 11 sentences in that group).

5.3 Case Study

Fig. 11 gives some cases that themodel prediction contains mistakes,

which illustrates the typical problems we are facing. The detailed

analysis on each case is shown in �gure and we summarize as

follows: a) the verbal expression might be ambiguous and confuse

the model, but this should be avoided in formal documents; b)

performance on some operators is worse than others, that should

attribute to the lack of training data (in training data, “+, >” are

about ten times rarer than “=,÷”); c) model might make mistakes

when the expression is complicated; d) there are some complicate

linguistic phenomenons hard to handle.

5.4 Speedup Result

Fig. 10 shows the training time of one epoch on ten thousand

sentences. If no parallelization is applied, the average running time

is 389.38s. Parallelizing by layer (parallel by layer and batch, where

batch size=1) reduce the time to 193.00s. If we parallelize by layer

and batch, and set batch size to 2, 4, ..., the training time keeps

falling, and reaches 72.50s when batch size is 32. Comparing to

389.38s, it saves 81.36% of the training time, which means more

than 5 times speedup. The result shows that methods we proposed

reduce the training time signi�cantly.

6 RELATED WORK

We introduce the related work in three aspects: some related NLP

tasks, neural network models, and speeding up methods.

Related NLP tasks. The the most related tasks include relation

extraction and semantic parsing. Relation extraction has a long

history. Most works focus on relations between two entities [1,

18, 19]. A recent work “numerical relation extraction” [17] try to

extract relations that contain numbers such like “in�ation rate(India,

10.9%)”. They stop at only one layer of relation, while our problem

asks to take a step forward to extracting “relation over relation”,

which is more di�cult considering the complexity of structure.

Semantic Parsing is a wide concept [4] which maps a natural-

language sentence into a formal representation of its meaning. Our

work is a type of semantic parsing that map natural language to the

formula structure. Other semantic parsings includemapping natural

language to database queries for question answering [3, 4, 15]. And

Hershcovich et al. [11] mapped natural language to a prede�ned

UCCA structure using transition-based parsing. By adding more

operations to transition set, it solved the reentrancy, discontinuous,

non-terminal problems. But in that work, every token in a sentence

is a part of the �nal structure which is di�erent with our problem

and transition-based method is not suited for our problem due to

the long distance relations.

A closely related problem is so-called “equation parsing" which

extract the equation structure in a sentence. There are some prelim-

inary works in this �eld. They assume one sentence contains one

equation (our model can handle multiple formulas), and the equa-

tion is a tree structure while our problem need to extract DAG struc-

ture. Speci�cally, Roy et al. [21] extracted all “triggers" followed

by predicting the structure based on Cocke–Younger–Kasami algo-

rithm combined with SVM. It assume the structure to be projective.

Koncel-Kedziorski et al. [13] applied integer linear programming

to generate candidate tree structures then chosen one of them with

SVM.

Model structure. From the perspective of model structure, our

work combines sequential LSTM and structured LSTM, and shares

some basic idea with recursive neural network. Bidirectional LSTM

is e�ective to represent tokens in its sentential context [9, 12]. It

has been widely used in many works such as semantic parsing [11],

relation extraction [19], neural machine translation [2, 6] etc.

Structured LSTM started from tree structure, and developed

repidly to DAG strcture. Tree-LSTM extend LSTM from sequen-

tial to structural. There are many variations of Tree-LSTM which

share the same idea but are slightly di�erent in the calculation

detail depending on the task. Leveraging the tree structure infor-

mation of sentence could outperformed state of the art models in

sentiment classi�cation [25, 29]. And it is also applied in relation

extraction [19] recently. DAG structured LSTM has been proposed

recently and applied to many �elds, like using DAG to represent the

di�erent semantic composition [28], using DAG RNN to connect

all pixels in one image for scene labeling [23]. But most of tree

and DAG structured LSTM concentrated on incorporating structure

information as input to model to get a better representation, while

in our work we use DAG-LSTM both to get a good representation

and to do structure prediction.



Chinese 2014年度、2015年度、2016年度，发行人发生的销售费用分别为56,073.37万元、57,940.22万元、63,217.70万元，占发行人

同期营业收入的比重分别为3.61%、2.26%、2.70%，稳定下降。

a) English In year 2014, 2015 and 2016, the selling expenses were ￥560.73 million, ￥579.40 million and ￥632.18 million respectively,

constituted 3.61%, 2.26% and 2.70% of business incomes of the corresponding periods, dropping steadily.

Errors & Analysis (selling, @, 2014) > (selling, @, 2015) and (selling, @, 2015) > (selling, @, 2016) appear in label result, but not in prediction. Notice

the expression in this sentence is actually ambiguous: does the ratios drop or both expenses and ratios drop ?

Chinese 公司2014年末较2013年末投资性房地产账面价值增加463,998.98万元，增长了72.24%，主要是购置了房屋建筑物、土地使

用权共计446,830.94万元，以及原投资性房地产公允价值变动增加17,168.04万元。

b) English At the end of 2014, the book value of investment real estates increased￥4,639.99 million than 2013, the growth rate was 72.24%,

mainly because purchased buildings, land use rights￥4,468.31 million in total, and the fair value of investment real estates

increased￥171,68 million.

Analysis on Errors (buildings, @, 2014) + (land use rights, @, 2014) =￥4,639.99 million appear in label result but not in prediction. That might

because “+” operator is relatively rare in training dataset.

Chinese 2012年度、2013年度、2014年度和2015年1-3月，公司财务费用有所波动，2013-2015年(2013年、2014年、2015年)，公司

财务费用分别为957.23万元、-1,411.25万元和1,468.40万元，2014年因市场利率整体较高，当年公司货币利息收入较多导

致财务费用为负；同期财务费用占营业收入的比重分别为0.35%、-0.47%和0.34%。

c) English In 2012, 2013, 2014 and the �rst quarter of 2015, �nancial expenses �uctuated slightly, in year 2013, 2014 and 2015, �nancial

expenses were￥9.57 million,￥-14.11 million and￥14.68 million respectively, in 2014 the average interest rate were high,

therefore higher company monetary interest revenue made �nancial expenses negative; �nancial expenses constituted 0.35%,

-0.47% and 0.34% of business income of the corresponding periods.

Analysis on Errors In prediction it missed the ratios. That might because the sentence is long, and there are some not closely related expressions

before the last words.

Chinese 2012年度、2013年度、2014年度和2015年1-3月，公司管理费用分别为8,215.12万元、14,288.53万元、18,006.34万元

和15,437.10万元，占当期营业收入比例分别为1.89%、1.13%、0.82%和1.05%，公司管理费用金额波动上升而占当期营

业收入比例有所下降，说明公司管理水平和费用控制能力较好。

d) English During year 2012, 2013, 2014 and the �rst quarter of 2015, G&A expenses (p1) are￥82.15 million,￥142.89 million,￥180.06

million and￥154.37 million respectively, constituted 1.89%, 1.13%, 0.82% and 1.05% of business incomes (p2), G&A expenses

(p3) increased and the proportion to business incomes (p4) of the corresponding period decreased, that indicated a high level of

management and cost control ability.

Analysis on Errors p1 and p3 have the same meaning but is actually di�erent node in DAG structure. In prediction model output several wrong

relations like (p3, @, 2012) / (p2, @, 2012) < (p3, 2013) / (p4, 2013). Although the underlying meaning is correct, what we expected

is (p3, @, 2012) / (p4, @, 2012) < (p3, @2013) / (p4, @, 2013). This is a common linguistic phenomenon “co-reference”, which might

require some further e�ort to address in our problem setting.

Figure 11: Some examples that the model prediction is not consistent with label.

Recursive neural network [24] is proposed for image segment

and natural language parsing in a recursive way. The overall frame-

work shares insight with ours, but there are some di�erences. First,

our model want to understand the structure of formulas and may

end up with multiple roots, while recursive NN want to get a global

idea of one sentence or image and merged into one root �nally.

Second, recursive NN “merge" two nodes into one parent and think

the parent contains the information of its children, so the chil-

dren are removed from the subsequent process which is clearly not

compatible with the reuse characteristic of formulas.

Speeding up neural networkmodels. The wild usage of com-

plex neural network in natural language processing has proposed

an urgent demand for faster training speed. Moshe et al. [16] treats

neural network as a computation graph, and computes all nodes

with same “depth” in graph in parallel. That work implemented in

tensor�ow shows that the parallelization method has a big speedup

power on tree input. Our work are built on Theano and shows

signi�cant speedup on DAG structure. Our method is build on pure

Theano without additional wrappers, which shows it is not too

complex to extend an implementation from sequential computing

to parallel computing.

7 CONCLUSION

When investors �nd out inconsistent errors in disclosure docu-

ments, they may doubt the authenticity of the whole document,

which can be quite a great cost to the �rms at some time. In or-

der to detect these accounting errors more e�ectively, this paper

proposes the iterative relation extraction model to extract formula

from text. This is a key component of our automatic Numerical

Cross-Checking (NCC) platform. By de�ning formula as a DAG

structure, our model is able to extract the DAG with high accuracy.

Based on this model, out system is able to detect numerical incon-

sistencies in real applications and has become widely accepted in

the Chinese �nancial community. The development of this system

will be ongoing.
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