

Mining Precise-positioning Episode Rules from Event Sequences Xiang Ao¹, Ping Luo¹, Jin Wang², Fuzhen Zhuang¹, Qing He¹

Institute of Computing Technology, CAS, China¹ University of California at Los Angeles, USA²

MOTIVATION

Traditional Episode Rule

Given a frequent episode α , a **traditional episode rule** in the form of $lhs \rightarrow rhs$ is generated straightforwardly: The antecedent *lhs* is the prefix of α and the consequent *rhs* is the last event in α , if its confidence is larger than a userspecified threshold.

Fig.1 The running example event sequence.

From Fig.1, $\langle D, A \rangle \rightarrow \langle B \rangle$ is a traditional episode rule which indicates it is **within 2 time intervals** after the occurrence of <D, A> that B will occur (with 100%) confidence).

Limitation of Traditional Episode Rule

Example: In stock investment application, we can map price change ratios to events and use candlestick charts to represent events. Red bars denote price increase of a stock, and green bars denote prices decrease.

 \blacktriangleright The episode rule $\langle D, A \rangle \rightarrow \langle B \rangle$ predicts correct in the following two cases, however we will lose money in Case 2 if we long the stock after we observed the antecedent of the rule.

he overal price hange ratio is negativę B

time constraints between

two consecutive events

Case 1: B occurs right behind <D, A>.

Case 2: B occurs after <D, A> appears within two days but right behind a significant decrease.

Precise-positioning Episode Rule (PER)

We define **precise-positioning episode rule** in the form of:

α: a **traditional episode**, as the antecedent; *β*: a **fixed-gap episode**, as the consequent; Δt : the time constraint between the antecedent and the consequent.

Fixed-gap episode: $\beta = (\langle e_{\beta_1}, \cdots, e_{\beta_k} \rangle, \langle \langle e_{\beta_1}, \cdots, e_{\beta_k} \rangle)$

		、	Ē
Δt_1 ,	••••,	$\Delta t_{k-1} \rangle$)	
			Ľ

 \blacktriangleright The traditional episode rule $\langle D, A \rangle \rightarrow \langle B \rangle$ in Fig.1 becomes two PERs: $\langle \mathbf{D}, \mathbf{A} \rangle \xrightarrow{\mathbf{1}} \langle \mathbf{B} \rangle$ and $\langle \mathbf{D}, \mathbf{A} \rangle \xrightarrow{\mathbf{2}} \langle \mathbf{B} \rangle$.

Mining ALGORITHM & EFFICIENCY

1. MIP-ENUM Algorithm

The basic idea of MIP-ENUM is to enumerate PER candidates by concatenating discovered traditional episode with fixed-gap episode and subsequently filter the invalid ones according their confidence values.

Algorithm: MIP-TRIE(DFS) and MIP-TRIE(PRU).

We use PER-trie to store all valid PER given an antecedent α and propose two algorithms to build complete PER-trie. > **MIP-TRIE(DFS)** expands the PER-trie by a recursively

- depth first search manner.
- > MIP-TRIE(PRU) adopts an improved traverse strategy with pruning technique.

q' is expanded first as child or r, and we traverse $w_1 - w_3$ and pruning w_4 , w_5 and w_7 and finally traverse w_6 with q'.

Dataset: Retail -- http://fimi.cs.helsinki.fi/data/ Observations: 1. MIP-TRIE(PRU) outperforms MIP-TRIE(DFS) and MIP-ENUM algorithm; 2. MIP-TRIE algorithms significantly outperform MIP-ENUM.

EFFECTIVENESS of PER

DATASET: 150 related industry sector pairs of China stock market from Jan. 1, 2010 to Aug. 29, 2014.

EVT SEQ. CONSTRUCTION: UP (if the price increases) and **DN** (otherwise) for each industry sector.

1	2	3	4	5	6	7	8	9	10	•
A-UP	A-UP	A-DN	A-UP	A-DN	A-UP	A-UP	A-DN	A-UP	A-UP	
B-UP	B-DN	B-DN	B-DN	B-UP	B-UP	B-UP	B-DN	B-DN	B-UP	

Fig.3 The example stock industry sector event sequence. A and B denote stock industry sectors.

SETTINGS: We use first 4-year sequence as the training set to mine PER on each sequence and degrade PER whose $\Delta t = 5$ to traditional episode rule (denoted as TDR), then test prediction ability of them on the rest.

COMPARISON: For PER, we trade strictly according to the rule; for TDR, we trade after antecedent occurs and close out either consequent appears or the maximal occurrence window for consequent reaches.

MEASURE: We close out when the float loss exceeds a stop-loss threshold during the holdings by TDR. We compute the return of holdings and visualize the winning rate of PER under different stop-loss threshold.

VENUE & CONTACT INFORMATION

The 33rd IEEE International Conference on Data Engineering, San Diego, California, USA, April 19-22, 2017.

Email: {aoxiang, luop}@ict.ac.cn, jinwang@cs.ucla.edu, {zhuangfz, heq}@ics.ict.ac.cn

Homepage of MLDM Group, ICT, CAS: http://mldm.ict.ac.cn Xiang's personal homepage: <u>http://mldm.ict.ac.cn/MLDM/~aox</u>

Public account on Wechat:

