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MOTIVATION

Given a frequent episode α, a traditional episode rule in 

the form of lhs → rhs is generated straightforwardly: The 

antecedent lhs is the prefix of α and the consequent rhs is 

the last event in α, if its confidence is larger than a user-

specified threshold.

Example: In stock investment application, we can map 

price change ratios to events and use candlestick charts to 

represent events. Red bars denote price increase of a 

stock, and green bars denote prices decrease.

We define precise-positioning episode rule in the form of:  

Mining ALGORITHM & EFFICIENCY

The 33rd IEEE International Conference on Data Engineering, San 

Diego, California, USA, April 19-22, 2017.

Email: {aoxiang, luop}@ict.ac.cn, jinwang@cs.ucla.edu, {zhuangfz, 

heq}@ics.ict.ac.cn

Homepage of MLDM Group, ICT, CAS: http://mldm.ict.ac.cn

Xiang’s personal homepage: http://mldm.ict.ac.cn/MLDM/~aox

Public account on Wechat: 

EFFECTIVENESS of PER

DATASET: 150 related industry sector pairs of China 

stock market from Jan. 1, 2010 to Aug. 29, 2014.

EVT SEQ. CONSTRUCTION: UP (if the price 

increases) and DN (otherwise) for each industry sector.
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Fig.1 The running example event sequence.

From Fig.1, <D, A> → <B> is a traditional episode rule 

which indicates it is within 2 time intervals after the 

occurrence of <D, A> that B will occur (with 100% 

confidence).

Traditional Episode Rule

Limitation of Traditional Episode Rule

Precise-positioning Episode Rule (PER)
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 The episode rule <D, A> → <B> predicts correct in 

the following two cases, however we will lose money 

in Case 2 if we long the stock after we observed the 

antecedent of the rule. 

Case 1: B occurs 

right behind <D, A>. Case 2: B occurs after <D, A> appears within 

two days but right behind a significant decrease.

The overall 

price 

change ratio  

is negative.

α: a traditional episode, as the antecedent;

β: a fixed-gap episode, as the consequent;

Δt: the time constraint between the antecedent 

and the consequent.

 The traditional episode rule <D, A> → <B> in Fig.1 

becomes two PERs: <D, A> → <B> and <D, A> → <B>.

time constraints between 

two consecutive events
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1. MIP-ENUM Algorithm

2. MIP-TRIE Algorithm

Data structure: PER-trie stores valid PER compactly.

The basic idea of MIP-ENUM is to enumerate PER 

candidates by concatenating discovered traditional episode  

with fixed-gap episode and subsequently filter the invalid 

ones according their confidence values.
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Root node: a traditional 

episode with end time of these 

minimal occurrence;

Non-root node: event with its 

occurrence time after a distance 

to its parent.

Edge: time distance between 

parent and child. 

Algorithm: MIP-TRIE(DFS) and MIP-TRIE(PRU).

We use PER-trie to store all valid PER given an antecedent 

α and propose two algorithms to build complete PER-trie.

 MIP-TRIE(DFS) expands the PER-trie by a recursively 

depth first search manner. 

 MIP-TRIE(PRU) adopts an improved traverse strategy 

with pruning technique. 
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Fig.2 The expansion process of MIP-TRIE(PRU). 

 q’ is expanded first as child or r, and we traverse w1 - w3 and 

pruning w4, w5 and w7 and finally traverse w6 with q’.

Efficiency Comparisons

Dataset: Retail -- http://fimi.cs.helsinki.fi/data/

Observations: 1. MIP-TRIE(PRU) outperforms MIP-

TRIE(DFS) and MIP-ENUM algorithm; 2. MIP-TRIE 

algorithms significantly outperform MIP-ENUM.

Fig.3 The example stock industry sector event sequence. 

 A and B denote stock industry sectors. 

SETTINGS: We use first 4-year sequence as the training 

set to mine PER on each sequence and degrade PER 

whose Δt = 5 to traditional episode rule (denoted as 

TDR), then test prediction ability of them on the rest.
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COMPARISON: For PER, we trade strictly according 

to the rule; for TDR, we trade after antecedent occurs 

and close out either consequent appears or the 

maximal occurrence window for consequent reaches. 

MEASURE: We close out when the float loss exceeds a 

stop-loss threshold during the holdings by TDR. We 

compute the return of holdings and visualize the 

winning rate of PER under different stop-loss threshold. 

The winning rate 

of PER > 50% 

indicates PER is 

more effective 

than TDR.

Fixed-gap episode:
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