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Abstract
Various hedonic content systems (e.g. mobile apps
for video, music, news, jokes, pictures, social net-
works etc.) increasingly dominates people’s daily
spare life. This paper studies common regularities
of browsing behaviors in these systems, based on a
large data set of user logs. We found that despite
differences in visit time and user types, the distri-
bution over browsing length for a visit can be de-
scribed by the inverse Gaussian form with a very
high precision. It indicates that the choice thresh-
old model of decision making on continuing brows-
ing or leave does exist. Also, We found that the
stimulus intensity, in terms of the amount of recent
enjoyed items, affects the probability of continu-
ing browsing in a curve of inverted-U shape. We
discuss the possible origin of this curve based on a
proposed Award-Aversion Contest model. This hy-
pothesis is supported by the empirical study, which
shows that the proposed model can successfully re-
cover the original inverse Gaussian distribution for
the browsing length. These browsing regularities
can be used to develop better organization of hedo-
nic content, which helps to attract more user dwell
time in these systems.

1 Introduction
Recent years have witnessed a fast increase of the usage of
mobile apps to consume various hedonic content (e.g. video,
music, news, jokes, pictures, social networks etc.) for fun.
These systems allow inexpensive and fast access to hedonic
content, which has dominated our spare time. For example,
according to the report1 from Tencent, more than 55.2% of
the 549 million active users visit Wechat for more than 10
times per day, summing up to more than 40-min usage. Due
to the explosive usage of these systems, more research into
the user behaviors in them is needed.

⇤This work was done when Jiaxi, Rui and Zhongjie were visit-
ing Institute of Computing Technology, CAS, China. At that time,
Jiaxi and Rui were the undergraduate students at Wuhan University,
China.

1http://tech.qq.com/a/20150127/018482.htm#p=1

In these hedonic content systems (HCS), the user behaviors
are often casual and task-less. It means that users might not
have a concrete task at all for the use of these systems, except
spending time and having leisure. Hence, users usually quit
the HCSs after a few minutes, while sometimes users become
couch potatoes even there is nothing worth reading. In this
study, we aim to discover common regularities, which drive
users’ browsing behaviors in HCSs, through extensive empir-
ical studies.

Specifically, we mainly study the behaviors of the deci-
sions on whether a user continues browsing or leave the HCS.
To support the easy browsing of hedonic content with over-
whelming quantity and diversity, content items are usually
organized in a sequence ranked by recency, popularity, or rel-
evance [Lerman and Hogg, 2014]. Although there are many
exogenous factors, such as content quality, network speed, ex-
ternal context, visit time etc., which may affect the decision
to proceed or quit, there might be some endogenous factors
from psychology and behavior to drive this decision.

Some recent research works in psychology focus on the
decision model for two-choice decision tasks [Ratcliff and
McKoon, 2008; Wagenmakers, 2009]. In their test of two
alternative forced-choice (2-AFC) task, the participants are
required to choose an answer out of two choices (e.g., yes or
no). The psychologists proposed a diffusion model to sim-
ulate this decision process, in which people collect evidence
for decision making. It assumes that a person has an action
bound in making choices and would not make decision until
the evidence of one choice exceeds the bound.

Motivated by this choice threshold model, we propose
a browsing model in HSC. It assumes that users continue
browsing until the evidence for quit exceeds the bound. With
this model, the first passage time to the action bound is
given by the two-parameter inverse Gaussian distribution [Se-
shardri, 1993]. To test the validity of this model, we analyzed
the data collected from a typical hedonic mobile app, Wall-
papers Plus for iOS 82. It shows a strong fit of the empirical
data to the theoretical distribution, and this strong fit always
occurs despite differences in visit time and user types. This
inverse Gaussian distribution indicates that there exists a page

2https://itunes.apple.com/en/app/bi-zhi+-zhu-ti-for-
ios8/id557074482
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position (the mode of the distribution, around the 6th page in
the considered wallpaper application) at which the probabil-
ity to leave is maximized.

Furthermore, we noticed that the number of recent enjoyed
items, as the stimulus intensity, might affect the decision on
continuing or leaving. Here, this stimulus intensity can be
measured by the number of clicks, votes or favorites on the
content items, which occur during the browsing process. To
this end, we explore how the probability of continuing brows-
ing change over this stimulus intensity. For the first time, we
observe that this curve does not monotonically increase, but
shows inverted-U shape. It suggests that very low or very high
levels of stimulus intensity will drive users to leave. Mean-
while, there is an intensity level of moderate degree at which
the probability of continuing browsing is maximal. This ob-
servation is actually an empirical counterpart to the old adage
recommending everything in moderation.

Finally, we discuss the possible origin of this inverted-U
curve based on a proposed model of Award-Aversion Con-
test. This hypothesis is supported in the sense that the fitting
with this model can successfully recover the original inverse
Gaussian distribution for the number of visit pages.

We argue that all these browsing regularities are helpful
to generate better content organization, which drives more
dwell time of users in HCSs. Specifically, the inverse Gaus-
sian distribution suggests that the content provider should pay
more attention on the content, shown at the mode position of
the distribution. Since the probability to leave is maximal
at this position, more attractive content should be arranged
here. After the mode position, since the probability to leave
decreases gradually some advertisements could be inserted.
Additionally, the inverted-U curve suggests that putting the
high-quality or low-quality items into a small page range,
which might attract very high or very low intensity of items
being clicked and saved, might not be a good choice for con-
tent organization. The high and low quality items should be
interleaved in the content sequence, leading to a moderate
level of item clicks and saves. Only with this moderate level
of stimulus intensity, the probability of continuing might be
maximal.

2 Data Background and User Logs
In this study we analyze the user logs from a typical hedonic
mobile app, Wallpapers Plus for iOS 83. This app ranked in
the top 20 list in the China market of Apple free apps and
has more than fifty million users. Here, we briefly describe
its function as follows. This app provides plenty of beauti-
ful wallpapers, presented in a sequence, to users for viewing
and downloading. After entering this app, as shown in Fig-
ure 1(a), users see one-page of wallpapers, where 9 pictures
are shown in the 3 ⇥ 3 grid. This is the thumbnail mode for
wallpapers. In this mode, users can swipe left on the screen
to fetch the next pages of wallpapers. Also, if they like one of
the 9 pictures, users can click it to see its full-screen version,
as shown in Figure 1(b). In this full-screen mode, users can
download, share, or bookmark this picture (by clicking the

3https://itunes.apple.com/en/app/bi-zhi+-zhu-ti-for-
ios8/id557074482

corresponding buttons at the bottom of the screen), or they
can click the return button (the leftmost one) to get back to
the thumbnail mode.

(a) The thumbnail mode (b) The full-screen mode

Figure 1: The screenshot of the app of Wallpapers Plus for
iOS 8

In this study we only consider the following two kinds of
user actions in this application: 1) turning to the next-page of
wallpapers; 2) clicking certain picture to see its full-screen
version. Table 1 summarizes all the notations used, with
which we detail the user logs for this study as follows.

Table 1: The notations

Symbol Meaning
~

S

i

the i-th sequence
t

i

the happening time of the i-th sequence
u

i

the user ID of the i-th sequence
A

ik

the actions on the k-th page of the i-th sequence
C

ik

the set of clicked items on the k-th page of the
i-th sequence

U

ik

the set of un-clicked items on the k-th page of
the i-th sequence

S the set of all the sequences
S�k

the set of all the sequences whose size is not
smaller than k

S
>k

the set of all the sequences whose size is bigger
than k

S=k

the set of all the sequences whose size is equal
to k

e

k

the event that a user turns to the k-th page

Specifically, each browsing sequence ~

S

i

can be denoted as
~

S

i

= (A

i1, · · · , Aik

, · · · , A
imi),

where A

ik

records the actions on the k-th page of this se-
quence, and |~S

i

| = m

i

denotes the size of this sequence,
meaning that the user only visited m

i

pages in this sequence.
Note that each sequence ~

S

i

begins from the first page. Fur-
ther, A

ij

can be represented as a tuple
A

ik

= (C

ik

, U

ik

),
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where C

ik

, U

ik

denote the sets of clicked and un-clicked
items in this page, respectively. |C

ik

|, |U
ik

| denote the num-
bers of items in these sets, respectively. Altogether, we have
the sequence set S, denoted by

S = {(~S
i

, t

i

, u

i

)|i = 1, · · · , n},

where |S| = n is the number of sequences in this set, t
i

is the
happening time of the i-th sequence, and u

i

is the user ID of
the i-th sequence. Additionally, we define S�k

as

S�k

= {(~S
i

, t

i

, u

i

) | |~S
i

| � k,

~

S

i

2 S},

denoting the set of all the sequences whose size is not smaller
than k. Similarly, we define S

>k

and S=k

as the set of all the
sequence whose size is bigger than k and equal to k, respec-
tively.

Note that users may have different intentions to use the
wallpaper app. Some may have the clear intention for chang-
ing wallpapers on the phones, while others may just browse
for leisure and fun. Also, in this app users can search for the
pictures they want by text queries. Since in this study we fo-
cuses on the “pleasure-seeking” behaviors without the clear
information needs, rather than the “information-seeking” be-
haviors with the clear information requirements, we deliber-
ately removed the logs from the search function for the fol-
lowing analysis.

Totally, we have the user logs for the 41 days from Nov.
4 to Dec. 14, 2014. After the data preprocessing, we have
1,545,950 sequences for the whole analysis in the following.
Note that since the pictures are the content items in this ap-
plication, the two terms, picture and item, will be used ex-
changeably in the rest of this paper.

3 Continue or Leave
Here, we describe the strong regularity of browsing patterns
in HCSs through extensive empirical studies. This regularity
can be described by a law of browsing, which determines the
probability distribution of the depth, namely the number of
pages a user browses within a visit of HCSs.

3.1 Stochastic Process for Browsing
We start by deriving the probability p(K) of the number of
pages K that a user browses in a visit. This can be done by
assuming that there is action bound ↵ for leaving. The brows-
ing process is actually a procedure of evidence accumulation,
and it continues until the evidence value X for leave reaches
the action bound ↵. We assume that at the beginning X0 = 0,
and X

k

grows as

X

k

= vk + �W

k

, (1)

where v > 0 is a constant for drift, � is a parameter, and W

t

is a standard Brownian motion [Shreve, 2008]. It means that
X

k

continuously increases at the speed of v plus some ran-
dom process �W

t

. With this stochastic process, a particular
sequence of browsing is one of its realizations.

In this process, once the accumulated evidence X

k

for
leaving reaches the action bound ↵, the process ends. The
number of pages a users follows before X

k

first reaches its

bound is a random variable K. Then, for the random walk in
Eq. (1), the probability distribution of this first passage time
to ↵ is given by the two parameter inverse Gaussian distribu-
tion [Seshardri, 1993],

p(K) =

r
�

2⇡K

3
exp[

��(K � µ)

2

2µ

2
K

], (2)

with mean E(K) = µ, variance V ar(K) = µ

3
/�, and mode

equaling to µ[(1 +

9µ2

4�2 )
1
2 � 3µ

2� ] (� is a scale parameter).

3.2 Empirical Studies on the Distribution of K
To test the validity of Eq (2), we analyze the data described in
Section 2. Specifically, for a certain size k 2 N we calculate
the value,

p(k) =

|S=k

|
|S|

where p(k) is the measured probability that a user browses
exactly k pages. The measured cumulative distribution func-
tion (CDF) of the depth K for all the data is shown in Fig-
ure 2(a). Then, we fit this measured line as the inverse Gaus-
sian distribution by the simplex search method [Lagarias et
al., 1998] with the objective of L1-norm. We test the quality
of the fit by analyzing a quantile-quantile against the fitted
distribution. As shown in Figure 2(b), it shows a strong fit
with the significance level P < 0.05.

This inverse Gaussian distribution has two aspects worth
stressing. First, it has a very long tail, indicating that some
sequences are extended to a much farther length, which devi-
ates a lot from the average number of visited pages. Second,
since the distribution mode and mean are different, the typ-
ical behavior of users will not be the same as their average
behavior. For the fitted distribution in Figure 2(a), its mode
is 6.43. It means that it is at the positions of page 6 or 7 that
users are most likely to leave. However, its mean is 23.03,
meaning that the average number of pages users visit in this
HCS is around 23. This distribution mean is greatly increased
by the extremely long sequences occurred. These character-
istics on the inverse Gaussian distribution support the obser-
vations that most frequently users leave the HCSs in a short
time while sometimes users stay in the HCSs for a long time.

We also divide the data into subgroups with different visit
time. We consider two dimensions of visit time. The first is
weekday or weekend while the second one is morning (8am
to 12am), afternoon (2pm to 6pm), or night (8pm to 12pm).
The data from all these subgroups show the same strength of
fit to the inverse Gaussian distribution with nearly the same
parameters. For example, the mean and mode for weekday
visit is 23.11 and 6.33 respectively while the mean and mode
for weekend visit is 22.72 and 6.38 respectively.

Furthermore, we divide the data into subgroups with dif-
ferent types of users, i.e. new or old ones. We aim to check
whether there exists some difference between the patterns for
new and old users. Specifically, we use the following process
to judge whether a user is new or old. Originally, we have the
whole 41-day data. For each sequence occurred in the last 26
days, we check whether the user of this sequence visited the
HCS in the first 15 days or not. If yes (or no), this sequence
belongs to the subgroup for old (new) users. Again, these two
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(a) The CDF of the sequences as a function of se-
quence length.
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(b) The quantile-quantile plot against the fitted distri-
bution.

Figure 2: The distribution fitting. The fitted inverse Gaussian distribution has µ = 23.03, � = 20.91, and the mode equals to
6.43.

subgroups show the strong strength of fit to the inverse Gaus-
sian distribution, however, their parameters are significantly
different. The mean and mode for old users are 25.65 and
8.73 respectively, while the mean and mode for new users are
22.06 and 5.83. It shows that old users visit more pages than
new users in terms of both distribution mean and mode.

Finally, we analyze the browsing sequences, in which there
are only picture clicks, but no saves. We believe that the be-
haviors in these sequences are for “pleasure-seeking” to more
degree. Based on these data, we actually observe the similar
pattern of Inverse Gaussian. In short, we argue that this strong
regularity does exist in the “pleasure-seeking” behaviors.

4 Stimulus Intensity in Moderation
Here, we consider how the stimulus intensity in terms of the
degree that users have enjoyed in HCSs affect their decisions
on continuing or leaving. In HCSs, this stimulus intensity can
be measured by the number of clicks, votes or favorites on the
content items, which occur in the browsing process. Before
this study, we have the conjecture that the more a user enjoys
the more likely that she continues browsing in HCSs. How-
ever, the collected data tell that this conjecture of “the more
the merrier” is not true. On the contrary, only the intensity
level of moderate degree drives the probability of continuing
browsing to be maximal.

4.1 Empirical Studies on Stimulus-Action
Here, the number of items a user clicked or saved recently can
be used as the measure for the items she enjoyed. Due to the
space limitation, we only show the patterns from the measure
for clicked items, and the similar patterns still exist with the
measure for saved items.

For a specific page position k in a sequence, the range for
counting the clicked items can be any page interval before k.
For example, the recent l pages is denoted by R = [k � l +

1, k]. Then, we have

Sw,R

>k

= {~S
i

|
X

j2R

|C
ij

| = w,

~

S

i

2 S
>k

},

denoting all the sequences whose size is bigger than k and
there are exactly w clicks in the page range of R. Simi-
larly, we define Sw,R

�k

, which is different from Sw,R

>k

only in
the sense that the size of these sequences is not smaller than
k. With these two notations, we can compute g

R

(k, w) as

g

R

(k,w) =

|Sw,R

>k

|
|Sw,R

�k

|
,

measuring the empirical probability that a user turns to the
(k+1)-th page after she clicks exactly w pictures in the page
range of R. The sub-index R can be omitted if the position
range R is given clearly in the context.

Considering the effect of memory decay [Das Sarma et al.,
2012], we first consider the range R of the latest 8 pages
to the position k, namely R = [k � 7, k]. Figure 3 shows
the values of g(k, w), where each solid curve stands for the
values of g(k, w) with a fixed k. It shows that when k is
fixed, g(k, w) first monotonically increases along w, reaches
its maximum around w = 5, and then drops monotonically
to a low value. Additionally, this pattern exists for different
values of k. Thus, the inverted-U curve always exists for this
stimulus-action relationship.

It is also worth mentioning that the similar patterns in Fig-
ure 3 still exist if we change the position range to the lat-
est 4 pages to position k, namely R = [k � 3, k]. We also
change R to an intermediate range far away from k, namely
R = [k � l1, k � l2] (where 8  l1 < l2). However, this
time g

R

(k, w) becomes very flat along the increase of w. It
indicates that the behaviors in a far-away range do not affect
the decision at the current position. It agrees with the effect
of memory decay.

Additionally, we see that in Figure 3 the curves correspond-
ing to bigger values of k are always above the ones with
smaller k. It indicates that g(k, w) increases when k � 8. It
is consistent with the observation on inverse Gaussian distri-
bution that after the page of distribution mode (around 6) the
probability of continuing browsing increases monotonically.
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Figure 3: The curves of g
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(k,w) with R = [k � 7, k] (solid
lines) and its fitting (dotted lines). Only the curves for

k = 8, 16, 24, 32, 40 are shown for clear presentation. Better
view with color.

4.2 Modeling the Inverted-U Curve
Next, we will propose a possible model to explain the obser-
vation of inverted-U curve. We argue that during the brows-
ing process two kinds of values, namely reward and aversion,
develop simultaneously on users. On one hand, high-quality
contents fulfil users with reward, which attracts users to stay
for more time. On the other hand, continuous consumption on
these contents produces to users aversion, which impels users
to leave. Then, to stay or leave the HCSs is jointly determined
by reward and aversion.

Modeling Reward and Aversion
In this study, we model reward and aversion respectively as
follows:

reward(w) = a1 · w↵

+ b1 (0 < ↵ < 1)

aversion(w) = a2 · w�

+ b2 (� > 1)

(3)

As shown in Figure 4, the stimulus intensity w is the number
of recent clicked items. We control the exponent values in
range of 0 < ↵ < 1 and � > 1 such that the values of re-
ward and aversion increase in return-diminishing and return-
increasing manner, respectively. These settings agree with
the intuitive understandings on them that: with the increase
of enjoyed items, reward goes up fast first, and then its in-
crease tendency slows down. Nevertheless, aversion goes up
slowly at the early time, but its increase speed becomes large
gradually.

Reward-Aversion Contest
Then, with the modeling on reward and aversion we propose
the following probabilistic process to determine the action of
stay or leave:

1) After a user clicks w pictures, two values, reward(w)
and aversion(w) in Equ. (3), are evoked by these clicked
pictures.

2) Then, we sample a value v from the Beta distribution
Beta(reward(w), aversion(w)). Namely, we have

v v Beta(reward(w), aversion(w))

Here, reward(w) and aversion(w) are used as the two pa-
rameters of the Beta distribution.

3) Finally, the action of continuing browsing, denoted by
Y , is the random variable of the Bernoulli distribution with
the success probability of v. Namely, we have

Y v B(v).

With this stochastic process we can get the expectation of
Y as follows;

E(Y )=E(E(Y |v))=E(v)=

reward(w)

reward(w) + aversion(w)

The above equation intuitively shows that the probabil-
ity of continuing browsing is controlled by the contest be-
tween reward and aversion. The bigger this fraction of

reward(w)
reward(w)+aversion(w) is, the more likely a user will continue
browsing.

a1  w  + b1
(0 <  < 1)

(a) The curve for reward.

a2  w  + b2
(  > 1)

(b) The curve for aver-
sion.

Figure 4: Modeling on reward and aversion

4.3 Fitting with Reward-Aversion Contest Model
With the proposed reward-aversion contest model, for a fixed
k we fit the curve g(k, w) by the function of

ĝ(k, w) =

reward(w)

reward(w) + aversion(w)

=

(a1 · w↵)
+ b1

(a1 · w↵

+ b1) + (a2 · w�

+ b2)

such that 0 < ↵ < 1 and � > 1. The fitted curves are the
dotted ones in Figure 3, which shows the strong fit with the
significance level P < 0.001.

For further confirmation of the model, we use the fitted val-
ues of ĝ(k,w) to recover the inverse Gaussian distribution on
K. Specifically, the probability that a user continues brows-
ing at page k can be computed as

g(k) =

X

w

g(k,w)f(k, w), (4)

where f(k,w) is the probability that a user click w items in
the page range of [k � 7, k]. It can be empirically estimated
from the data. Then, we have

p(k) = (1�
k�1X

i=1

p(i))(1� g(k)), (5)

where (1�
P

k�1
i=1 p(i)) is the probability that a user browses

at least k pages. With Eq. (4) and (5), we can recover the

3815



values of p̂(k) from the fitted values of ĝ(k, w). Specifically,
we have

p̂(k) = (1�
k�1X

i=1

p̂(i))(1� ĝ(k))

= (1�
k�1X

i=1

p̂(i))(1�
X

w

ĝ(k, w)f(k, w))

Then, based on the values of p̂(k), we also get a strong
fit of these values to an inverse Gaussian distribution with
µ = 23.17 and � = 21.17. And its mode is 6.50. Compared
with the true inverse Gaussian distribution in Figure 2(a)
based on the empirical values of p(k), we cannot reject the
null hypothesis that these two distributions are the same with
the significance level P < 0.001. It indicates again that
ĝ(k, w) is a strong fit to g(k,w).

5 Related Work
Since HCSs increasingly dominate our spare time, more re-
search into these casual and task-less scenarios is needed. To-
wards this end, this study exposes the inverse Gaussian dis-
tribution on the depth of the browse sequences. Similar reg-
ularity was discovered by Huberman et. al. [Huberman et
al., 1998] for the behavior patterns in world wide web surf-
ing. Surfing in world wide web is usually task-oriented, while
browsing in HCSs is often task-less except for spending time
and having leisure. This study actually confirms this regular-
ity in these more casual scenarios. Additionally, for the first
time we study how the stimulus intensity in terms of the num-
ber of recently clicked items affects the probability of contin-
uing browsing. We observe the pattern of inverted-U, and
give a possible explanation for this observation by proposing
the reward-aversion contest model, which is based on the re-
search in psychophysics [Murray, 1993]. We show a strong fit
on this pattern in the sense that the fitted curves by the reward-
aversion contest model can successfully recover the original
inverse Gaussian distribution on the depth of the browse se-
quences.

The research on HCSs mostly focuses on assessing the ap-
peal of content items in order to identify interesting ones in
a timely manner for users [Lerman and Hogg, 2014]. Due
to the overwhelming quantity and diversity of hedonic con-
tent (e.g. pictures, news, videos generated every day), these
studies help to answer the questions, such as which of the
thousands of daily news on Digg and Reddit are worth read-
ing, and which of the many videos uploaded every day are
worth watching. Usually, HCSs provide a voting function
to allow users to express their opinions, and then rank the
content items based on these opinions. The concrete ranking
strategies can be sort by voting numbers (e.g. in Dig and Red-
dit) or sort by voting recency (e.g. latest retweet items appears
at the top of a follower’s stream). However, these collective
judgements often produces “rich-get-richer” and “irrational
herding” phenomenon [Szabo and Huberman, 2010; Yin et
al., 2012], in which the inequality and unpredictability of
high-quality items will be increased by position bias [Lerman
and Hogg, 2014] and social influence [Lorenz et al., 2011;

Salganik et al., 2006]. Thus, these ranking schemes are often
biased and inconsistent, with the similar items ending up with
totally different numbers of votes.

There are also some other studies, focusing on user brows-
ing models in a search engine as a typical task-oriented
system [Chapelle and Zhang, 2009; Craswell et al., 2008;
Joachims, 2002; Joachims et al., 2005; Srikant et al., 2010;
Zhang and Jones, 2007]. These studies aimed to leverage the
click logs to improve the search engine performance. The
key issue in this area is to infer the true relevance for query-
document pairs while removing the effect from document po-
sitions. Along this line, Joachims [Joachims, 2002; Joachims
et al., 2005] conveyed the click-through data as relative rele-
vance judgements instead of absolute relevance judgements,
and proposed the ranking SVM algorithm to learn a better
ranking function. This is the indirect method to interpret
the click logs from a search engine. On the other hand,
there are also some studies to infer the document relevance
directly [Chapelle and Zhang, 2009; Craswell et al., 2008;
Srikant et al., 2010; Zhang and Jones, 2007]. Their basic idea
is to model the sequence of user browsing and clicking search
results as a probabilistic process with the true relevance as the
latent variables. This probabilistic process is usually based
on the assumption that: the probability of being clicked de-
cays by position, and users examine the results sequentially
and terminate once a relevant document is found. Chapelle
and Zhang [Chapelle and Zhang, 2009] further model the
perceived relevance (the probability that an item is clicked)
and actual relevance (the probability that the user is satisfied
given that the item is clicked) respectively, and the true rel-
evance is defined as the product of these two terms. Srikant
et al. [Srikant et al., 2010] also proposed the model where
examination depends on how the prior results are clicked.

Compared with task-oriented systems, user behaviors in
taskless HCS are more casual. High-quality content brings
more reward to users and thus prompt them to explore more.
Meanwhile, aversion also increases after users consume more
content and then impel users to leave. Therefore, the dilemma
on exploring more or not is a contest between reward and
aversion.

6 Conclusion
In this paper, we study the mechanism behind the “pleasure-
seeking” behaviors in HCSs. We found that the distribution
over browsing length for a visit can be described by the in-
verse Gaussian form with a very high precision. Also, we
found that the amount of recent enjoyed items affects the
probability of continuing browsing in a curve of inverted-U
shape. Furthermore, we propose the possible models to ex-
plain why these patterns always exist. Clearly, all these reg-
ularities help to guide the content arrangement in the HCSs,
which may attract more user dwell time. In the future, based
on all these regularities we will formally formulate the prob-
lem of content organization optimization, which aims to max-
imize the average user dwell time. Also, we plan to extend
this study into micro-perspective level for the relationship be-
tween the characteristics of different user communities and
the model parameters for these regularities.
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