2nd World Congress and School on Universal Logic

中斜院计算码

DDL: Embracing Action Formalism into Description Logic

Zhongzhi Shi Liang Chang shizz@ics.ict.ac.cn

Institute of Computing Technology Chinese Academy of Sciences Zhongzhi Shi: DDL

1

Outline

Introduction

- Description Logic
- Dynamic Description Logic
- DDL-Based Knowledge Representation
- DDL-Based Reasoning
- Applications
- Conclusions

Intelligence

Intelligence encompasses abilities such as:

understanding language
perception
learning
reasoning

The Dream in Al

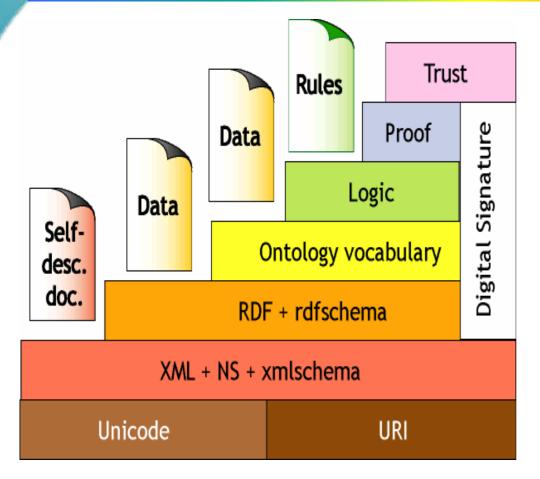
Look for a formal logic can describe:

- Perception
- Reasoning
- Behavior
- Decision making

Formal Logics

- First order logic
- Modal logic
- Temporal logic
- Prolog
- GOLOG
- Description logic

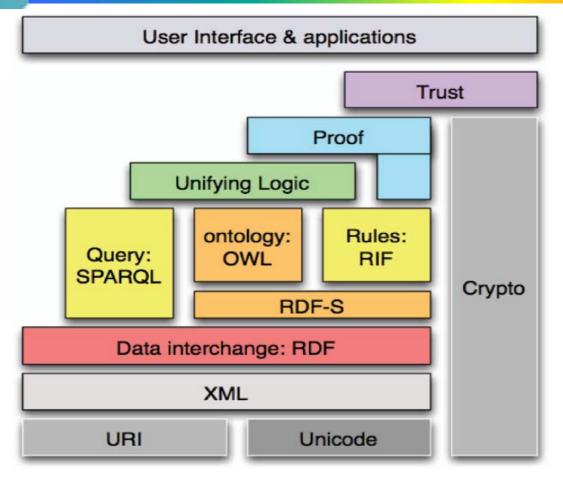
Semantic Web Layers



May 2001 Semantic Web ■10 Feb 2004 W3C: OWL

by Tim Berners-Lee 2007/8/22

Zhongzhi Shi: DDL



2006Web Science

by Tim Berners-Lee 2007/8/22 Zhongzhi

Zhongzhi Shi: DDL

Universal Logic

Beziau, Jean-Yves

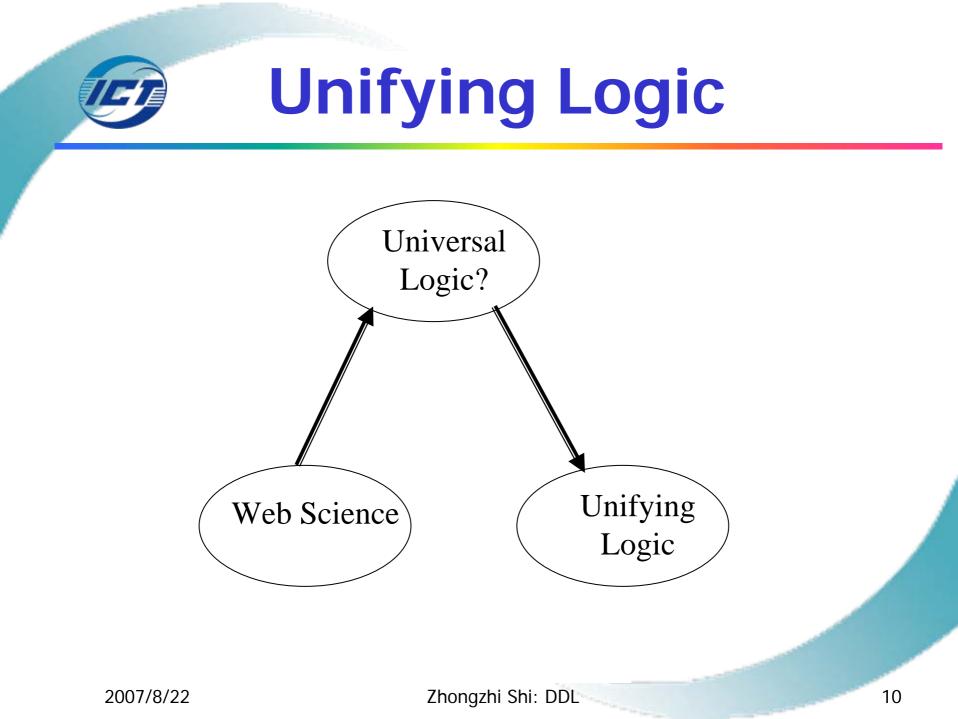
Universal Logic is not a new logic, but a general theory of logics, considered as mathematical structures.

The name was introduced about ten years ago, but the subject is as old as the beginning of modern logic: Alfred Tarski and other Polish logicians such as Adolf Lindenbaum developed a general theory of logics at the end of the 1920s based on consequence operations and logical matrices.

Universal Logic

Beziau, Jean-Yves: Main line of research of Uni. Logic

- Foundations of mathematics
- Different systems of logic
- General theory and tools for logics



Outline

- Introduction
- Description Logic
- Dynamic Description Logic
- DDL-Based Knowledge Representation
- DDL-Based Reasoning
- Applications
- Conclusions

Logical Foundation of the Semantic Web

- OWL Lite: corresponding to the description logic SHIF(D)
 - Classification hierarchy
 - Simple constraints
- OWL DL: corresponding to the description logic SHQIN(D)
 - Maximal expressiveness
 - While maintaining tractability
 - Standard formalisation
- OWL Full:
 - Very high expressiveness
 - Loosing tractability
 - Non-standard formalisation
 - All syntactic freedom of RDF (self-modifying)

OWL: Ontology language Zhongzhi Shi: DDL recommended by W3C₁₂

Full

DL

ite

Description Logics

- Decidable Subset of First-Order Logic
- Model theoretic semantics by mapping to abstract domain
- Provides Primitives for defining Conceptual Knowledge
 - Concept Expressions (Formulas with 1 free variable) for describing Sets of Objects
 - Boolean Operators: $C \cap D, C \cup D, \neg C$
 - Quantifiers: $(\exists R.C), (\forall P.C)$
 - Cardinality Constraints: (= n R), (> n R), (< n R), $(\ge n R)$, $(\le n R)$
 - Axioms define relations between concepts
 - Subsumption: $C \subseteq D$
 - Equivalence: $C \equiv D$
 - Disjointness: $C \cap D \subseteq \bot$

2007/8/22

Zhongzhi Shi: DDL

Short History of Description Logics

- Phase 1:
 - Incomplete systems (Back, Classic, Loom, . . .)
 - Based on structural algorithms
- Phase 2:
 - Development of tableau algorithms and complexity results
 - Tableau-based systems for Pspace logics (e.g., Kris, Crack)
 - Investigation of optimisation techniques
- Phase 3:
 - Tableau algorithms for very expressive DLs
 - Highly optimised tableau systems for ExpTime logics (e.g., FaCT, DLP, Racer)
 - Relationship to modal logic and decidable fragments of FOL

A Basic Description Logic: ALC

Construc tor	Syntax	Semantics	Examples
Atomic concept	A	$A^I \subseteq riangle^I$	Human
Atomic Relation	R	$R^I \subseteq \triangle^I \times \ \triangle^I$	has-child
	$C \sqcap D$	$C^I \cap D^I$	Human 🗆 Male
	$C \sqcup D$	$C^I \cup D^I$	Doctor 🗆 Lawyer
_	$\neg C$	$ riangle^{I}ackslash C$	¬ Male 🧹
	$\exists R.C$	$\{x \mid \exists y. < x, y \ge \in \mathbb{R}^I \land y \in \mathbb{C}^I\}$	∃ has-child.Male
\forall	$\forall R.C$	$\{x \mid \forall y. < x, y > \in \mathbb{R}^I \Rightarrow y \in \mathbb{C}^I\}$	\forall has-child.Doctor

woman \equiv person \sqcap female man \equiv person \sqcap \neg woman

mother \equiv woman $\sqcap \exists$ hasChild.person

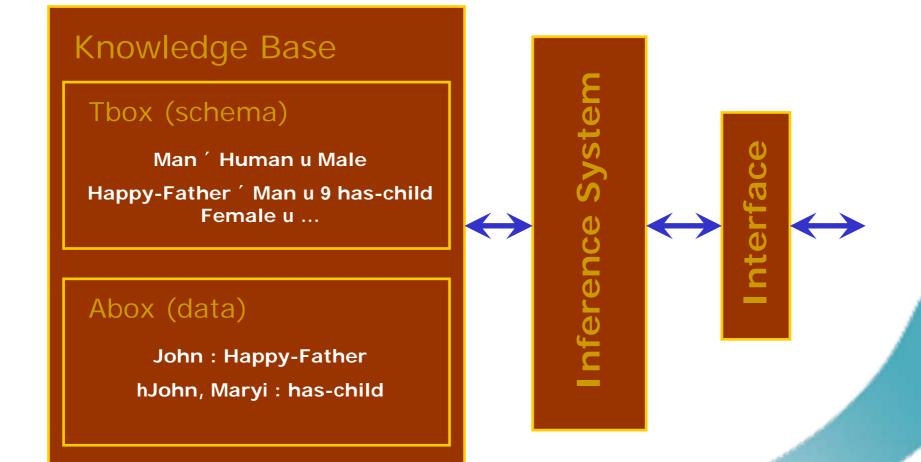
father \equiv man $\sqcap \exists$ hasChild.person

DL Knowledge Base

- DL Knowledge Base (KB) normally separated into 2 parts:
 - TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.:
 - HappyFather = Man $\sqcap \exists$ hasChild.Female $\sqcap \ldots$
 - Elephant \subseteq Animal \sqcap Large \sqcap Grey
 - transitive(ancestor)
 - ABox is a set of axioms describing a concrete situation (data), e.g.:
 - John:HappyFather
 - -
- Separation has no logical significance
 - But may be conceptually and implementationally convenient.
 2007/8/22 Zhongzhi Shi: DDL

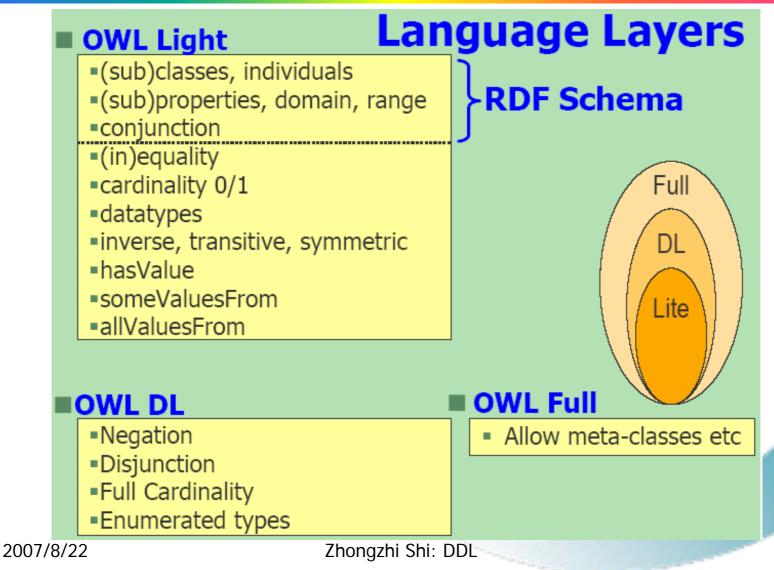
Tableau Rules for ALC

Name	Rule	
П	if $(C_1 \sqcap C_2)$ $(x) \in S$, and $C_1(x) \notin S$ or $C_2(x) \notin S$,	
	Then S:= $S \cup \{C_1(x), C_2(x)\}$	
Ц	if $(C_1 \sqcup C_2)$ $(x) \in S$, and $C_1(x) \notin S$, $C_2(x) \notin S$,	
	Then S:= $S \cup \{C_1(x)\}$ or S:= $S \cup \{C_2(x)\}$	
Ξ	if $(\exists R. C)(x) \in S$, and not exist y	
	$R(x, y) \in S, C(y) \in S$, then S has z, S:=	
	$S \cup \{C(z), R(x, z)\}$	
\forall	if $(\forall R. C) (x) \in S$, tehn S:= $S \cup \{C(y) \mid A \in S\}$	
	$R(x, y) \in S \text{ and } C(y) \notin S$	



Zhongzhi Shi: DDL

Ontology language: OWL



20

Outline

- Introduction
- Description Logic
- Dynamic Description Logic
- DDL-Based Knowledge Representation
- DDL-Based Reasoning
- Applications
- Conclusions

Dynamic Description Logic

- Embracing actions into description logics, with the feature that actions are treated as citizens.
- Therefore, there are three kinds of first-class citizens :
 - Concepts
 - Formulas
 - Actions
- Here we investigate a dynamic description logic D-ALCO@, corresponding to the description logic ALCO@.

- Primitive symbols of D-ALCO@ are a set N_C of concept names, a set N_R of role names, and a set N_I of individual names.
- **Concepts** are formed with the syntax rule: $C, C' \longrightarrow C_i |\{p\}|@_p C|\neg C|C \sqcup C'|\exists R.C| < \pi > C$ (1)
- where $C_i \in N_{C'}$ $p \in N_{I'}$ $R \in N_{R'}$ and π is an action.
- Abbreviations: $C \sqcap C' = \neg(\neg C \sqcup \neg C')$ $\forall R.C = \neg \exists R.C$

$$\forall R.C = \neg \exists R.C$$

 $\top = C \sqcup \neg C$
 $\bot = \neg \top$

• Formulas are formed with the syntax rule: $\varphi, \varphi' \longrightarrow C(p)|R(p,q)|\neg \varphi|\varphi \lor \varphi'| < \pi > \varphi$ (2) where *C* is a concept, $p, q \in N_{I}, R \in N_{R}$, and π is an action.

• Abbreviations: $\varphi \land \varphi' = \neg(\neg \varphi \lor \neg \varphi')$ $[\pi]\varphi = \neg < \pi > \neg \varphi$ $\varphi \rightarrow \varphi' = \neg \varphi \lor \varphi'$ $true = \varphi \lor \neg \varphi$ $false = \neg true$

Zhongzhi Shi: DDL

Syntax

An atomic action is a pair (*P,E*), where,

- *P* is a finite set of formulas, describing the precondition of the action,
- *E* is a finite set of formulas, describing the effect of the action, with each formula be of form A(p), $\neg A(p)$, R(p, q), or $\neg R(p, q)$, where $A \in N_C$, $R \in N_R$, and $p, q \in N_I$.
- let $P = \{\phi_1, ..., \phi_n\}$ and $E = \{\phi_1, ..., \phi_m\}$, then Pand E subject to the constraint that $\phi_1 \land ... \land \phi_n$ $\rightarrow \phi_k$ for all k with $1 \le k \le m$.

• Actions are formed with the syntax rule: $\pi, \pi' \longrightarrow (P, E) | \varphi ? | \pi \cup \pi' | \pi; \pi' | \pi^*$

where (*P*,*E*) is an atomic action, ϕ is a formula.

• *Abbreviations*:

if φ then π else $\pi' = (\varphi?; \pi) \cup ((\neg \varphi)?; \pi')$ while φ do $\pi = (\varphi?; \pi)^*$; $(\neg \varphi)?$ (3)

• A model for dynamic description logic is a pair M=(W, I), where W is a set of states, I associates with each state $w \in W$ an interpretation:

$$I(w) = (\triangle^{I}, C_{0}^{I(w)}, \dots, R_{0}^{I(w)}, \dots, p_{0}^{I}, \dots),$$

with
$$C_i^{I(w)} \subseteq \triangle^I$$
 for each $C_i \in N_c$,
 $R_i^{I(w)} \subseteq \triangle^I \times \triangle^I$ for each $R_i \in N_R$,
and $p_i^I \in \triangle^I$ for each $p_i \in N_I$;

Furthermore, each action π is interpreted as a binary relation $\pi \stackrel{I}{\subseteq} W \times W$.

- Semantics: Let M = (W, I) be a model and w a state in W, then:
 - the value C^I(w) of a concept C is defined inductively as:

$$\begin{array}{l} (1) \ \{p\}^{I(w)} = \{p^{I}\}; \\ (2) \ \text{If} \ p^{I} \in C^{I(w)} \ \text{then} \ (@_{p}C)^{I(w)} = \bigtriangleup^{I}, \ \text{else} \ (@_{p}C)^{I(w)} = \emptyset; \\ (3) \ (\neg C)^{I(w)} = \bigtriangleup^{I} - C^{I(w)}; \\ (4) \ (C \sqcup D)^{I(w)} = C^{I(w)} \cup D^{I(w)}; \\ (5) \ (\exists R.C)^{I(w)} = \{x | \exists y.((x,y) \in R^{I(w)} \land y \in C^{I(w)})\}; \\ (6) \ (<\pi > C)^{I(w)} = \{p | \exists w' \in W.((w,w') \in \pi^{I} \land p \in C^{I(w')})\}; \\ \end{array}$$

• the truth-relation $(M, w) \models \phi$ (or simply $w \models \phi$ if *M* is understood) for a formula ϕ is defined inductively as:

(7)
$$(M, w) \models C(p)$$
 iff $p^I \in C^{I(w)}$;
(8) $(M, w) \models R(p, q)$ iff $(p^I, q^I) \in R^{I(w)}$;
(9) $(M, w) \models \neg \varphi$ iff $(M, w) \models \varphi$ not holds;
(10) $(M, w) \models \varphi \lor \psi$ iff $(M, w) \models \varphi$ or $(M, w) \models \psi$;
(11) $(M, w) \models <\pi = \varphi$ iff $\exists w' \in W.((w, w') \in \pi^I \land (M, w') \models \varphi)$;

• the binary relation π^I for an action π is defined inductively as:

(12) Let S be a formula set, then, $(M, w) \models S$ iff $(M, w) \models \varphi_i$ for all $\varphi_i \in S$; (13) Let (P, E) be an atomic action with $E = \{\phi_1, \ldots, \phi_m\}$, then, $(P, E)^I = \{(w_1, w_2) \in W \times W \mid (M, w_1) \models P, C^{I(w_2)} = C^{I(w_1)} \cup C^+ - C^- \text{ for each primitive concept name } C \in N_{CP}, \text{ and } R^{I(w_2)} = R^{I(w_1)} \cup R^+ - R^- \text{ for each role name } R \in N_R\}$, where,

•
$$C^+ = \{ p^I \mid C(p) \in E \},$$

• $C^- = \{ p^I \mid \neg C(p) \in E \},$
• $R^+ = \{ (p^I, q^I) \mid R(p, q) \in E \},$
• $R^- = \{ (p^I, q^I) \mid \neg R(p, q) \in E \};$
(14) $(\varphi?)^I = \{ (w_1, w_1) \in W \times W \mid (M, w_1) \models \varphi \};$
(15) $(\pi \cup \pi')^I = \pi^I \cup \pi'^I;$
(16) $(\pi; \pi')^I = \pi^I \circ \pi'^I;$
(17) $(\pi^*)^I = \text{reflexive transitive closure of } \pi^I.$

Outline

- Introduction
- Description Logic
- Dynamic Description Logic
- DDL-Based Knowledge Representation
- DDL-Based Reasoning
- Applications
- Conclusions

Knowledge Base Based on Dynamic Description Logic

Knowledge Base: $K = \langle T, Ac, A \rangle$

① *T*, also called TBox, is a finite set composed of *terminological axioms*, with each axiom be of form $D \equiv C$, where *D* is a new defined concept name, *C* is a concept.

Starting with concept names contained in the set N_C , many new concept names can be inductively defined.

Because actions can be used as model operators for the construction of concepts, concepts with dynamic meanings can be described. E.g.,

PhdCandidate = student ⊓ ∃forDegree.doctorDegree

□ < PhdDefend>doctor

Knowledge Base Based on Dynamic Description Logic

2 Ac, also called ActionBox, is a finite set composed of action axioms, with each axiom be of form $\alpha(v_1, ..., v_n) \equiv \pi$, where α is a new defined action name, $v_1, ..., v_n$ are individuals that the action operate on, and π is an action.

Both atomic action and complex action can be defined with action axioms. Therefore, actions can be described and published as a sort of knowledge.

E.g., graduate(v) = ({student(v)}, {¬student(v)}); buyBicycle(u,v) = ({bicycle(v), ¬owns(u,v), wants(u,v), hasMoney(u)},

 $\{\mu_{n}, \mu_{n}, \mu_{n},$

Knowledge Base Based on Dynamic Description Logic

③ *A*, also called ABox, is a finite set composed of *individual assertions*, with each assertion be of form C(p), R(p, q), or $\neg R(p, q)$;

A concrete situation is described with these assertions, by describing the properties of all the concerned individuals.

Semantics of the Knowledge Base

Let K = <T, Ac, A> be a knowledge base, M=(W, I) a model and w a state in W. Then,

- (1) (*M*,*w*) satisfies a terminological axioms $D \equiv C$, written as (*M*,*w*) $|= D \equiv C$, if and only if $D^{I}(w) = C^{I}(w)$;
- (2) (*M*,*w*) satisfies the TBox *T*, written as (*M*,*w*) \models *T*, if and only if (*M*,*w*) \models *D* \equiv *C* for all *D* \equiv *C* \in *T*;
- (3) (*M*,*w*) satisfies the ABox *A*, written as (*M*,*w*) $\models A$, if and only if (*M*,*w*) $\models \phi$ for all $\phi \in A$;
- (4) *M* satisfies the TBox *T*, written as $M \models T$, if and only if $(M, w) \models T$ for all $w \in M$;
- (5) (M,w) satisfies the knowledge base K, written as $(M,w) \models K$, if and only if $M \models T$ and $(M,w) \models A$.

Outline

- Introduction
- Description Logic
- Dynamic Description Logic
- DDL-Based Knowledge Representation
- DDL-Based Reasoning
- Applications
- Conclusions

prefixed tableau calculus

- This prefixed tableau calculus is an elaborated combination of:
 - the standard tableau calculus for *ALCO*@,
 - the prefixed tableaux for propositional dynamic logic, and
 - the embodiment of the possible models approach for interpreting actions.
- The satisfiability problem and other reasoning problems can be realized based on this calculus.

2007/8/22

prefixed tableau calculus

Some notations:

A prefix σ. ε is composed of a sequential action σ and a set of effects ε, and is formed inductively with the syntax rule:

 $\sigma.\varepsilon \longrightarrow (\emptyset, \emptyset).\emptyset | \sigma; (P, E).(\varepsilon - \{\neg \varphi | \varphi \in E\}) \cup E$ (4)

where (\emptyset, \emptyset) and (P,E) are atomic actions, σ ; (P,E) is a sequential action, and $(\sigma - \{\neg \phi \mid \phi \in E\}) \cup E$ is a set of effects.

- A prefixed formula is a pair $\sigma \cdot \varepsilon : \phi$, where $\sigma \cdot \varepsilon$ is a prefix, ϕ is a formula.
- Prefixed tableau calculus for the dynamic description logic is shown in Figure 1, 2, 3, and 4. A tableau rule from them could be applied in the condition that the premise of this rule is hold.

2007/8/22

prefix

prefixed tableau calculus

$\mathbf{R}_{\neg \neg c}$	If $\sigma . \varepsilon : (\neg (\neg C))(x) \in S$, and $\sigma . \varepsilon : C(x) \notin S$,	
	then $S_1 := \{ \sigma. \varepsilon : C(x) \} \cup S.$	
$\mathbf{R}_{\{\}}$	If $\sigma.\varepsilon: \{q\}(x) \in S$, and $x \neq q \notin S$, $q \neq x \notin S$,	
	then $S_1 := \{x = q\} \cup S[x/q]$, here $S[x/q]$ is obtained from S by replacing each	
	occurrence of x in S_{PF} , S_{nSC} and S_{VR} by q.	
$\mathbf{R}_{\neg \{\}}$	If $\sigma.\varepsilon: (\neg\{q\})(x) \in S$, and and $x \neq q \notin S$, $q \neq x \notin S$,	
	then $S_1 := S \cup \{x \neq q\}.$	
$\mathbf{R}_{\mathbf{Q}}$	If $\sigma . \varepsilon : (@_q C)(x) \in S$, and $\sigma . \varepsilon : C(q) \notin S$,	
	then $S_1 := \{\sigma.\varepsilon : C(q)\} \cup S.$	
$\mathbf{R}_{\neg @}$	If $\sigma . \varepsilon : (\neg @_q C)(x) \in S$, and $\sigma . \varepsilon : (\neg C)(q) \notin S$,	
	then $S_1 := \{\sigma.\varepsilon : (\neg C)(q)\} \cup S.$	
\mathbf{R}_{\sqcup}	If $\sigma.\varepsilon: (C_1 \sqcup C_2)(x) \in S$, and $\sigma.\varepsilon: C_1(x) \notin S$, $\sigma.\varepsilon: C_2(x) \notin S$,	
	then $S_1 := \sigma \cdot \varepsilon : C_1(x) \cup S, S_2 := \sigma \cdot \varepsilon : C_2(x) \cup S.$	
$\mathbf{R}_{\neg \sqcup}$	If $\sigma . \varepsilon : (\neg (C_1 \sqcup C_2))(x) \in S$, and $\sigma . \varepsilon : (\neg C_1)(x) \notin S$ or $\sigma . \varepsilon : (\neg C_2)(x) \notin S$,	
	then $S_1 := \{ \sigma.\varepsilon : (\neg C_1)(x), \sigma.\varepsilon : (\neg C_2)(x) \} \cup S.$	
\mathbf{R}_{\exists}	If $(\emptyset, \emptyset).\emptyset : (\exists R.C)(x) \in S$,	
	there is no y such that $(\emptyset, \emptyset) . \emptyset : R(x, y) \in S$ and $(\emptyset, \emptyset) . \emptyset : C(y) \in S$,	
	then $S_1:=\{(\emptyset, \emptyset).\emptyset: C(z), (\emptyset, \emptyset).\emptyset: R(x, z)\} \cup S, z$ is a new individual name.	
$\mathbf{R}_{\neg\exists}$	If $(\emptyset, \emptyset).\emptyset : (\neg \exists R.C)(x) \in S$,	and the second
	there is a y with $(\emptyset, \emptyset).\emptyset : R(x, y) \in S$ and $(\emptyset, \emptyset).\emptyset : (\neg C)(y) \notin S$,	
	$\text{then } S_{1} := \{ (\emptyset, \emptyset) . \emptyset : (\neg C)(y) \ \ (\emptyset, \emptyset) . \emptyset : R(x, y) \in S \text{ and } (\emptyset, \emptyset) . \emptyset : (\neg C)(y) \notin S \}.$	

prefixed tableau calculus

$\mathbf{R}_{\neg f}$	If $\sigma.\varepsilon: \neg(C(x)) \in S$ and $\sigma.\varepsilon: (\neg C)(x) \notin S$,
	then $S_1 := \{ \sigma. \varepsilon : (\neg C)(x) \} \cup S.$
$\mathbf{R}_{\neg \neg f}$	If $\sigma . \varepsilon : \neg (\neg \varphi) \in S$ and $\sigma . \varepsilon : \varphi \notin S$,
	then $S_1 := \{ \sigma. \varepsilon : \varphi \} \cup S.$
\mathbf{R}_{\vee}	If $\sigma . \varepsilon : \varphi \lor \psi \in S$, $\sigma . \varepsilon : \varphi \notin S$, and $\sigma . \varepsilon : \psi \notin S$,
	then $S_1 := \{ \sigma.\varepsilon : \varphi \} \cup S, S_2 := \{ \sigma.\varepsilon : \psi \} \cup S.$
$R_{\neg\vee}$	$\text{If } \sigma.\varepsilon:\neg(\varphi\vee\psi)\in S \text{, and } \sigma.\varepsilon:\neg\varphi\notin S \text{ or } \sigma.\varepsilon:\neg\psi\notin S,$
	then $S_1 := \{ \sigma.\varepsilon : \neg \varphi, \sigma.\varepsilon : \neg \psi \} \cup S.$
$\mathbf{R}_{<;>f}$	If $\sigma.\varepsilon :< \pi_1; \pi_2 > \varphi \in S$ and $\sigma.\varepsilon :< \pi_1 > < \pi_2 > \varphi \notin S$,
	then $S_1 := \{ \sigma. \varepsilon : < \pi_1 > < \pi_2 > \varphi \} \cup S.$
R ¬<;>	If $\sigma.\varepsilon: \neg < \pi_1; \pi_2 > \varphi \in S$,
	and $\sigma.\varepsilon: \neg < \pi_1 > < \pi_2 > \varphi \notin S$,
	then $S_1 := \{ \sigma. \varepsilon : \neg < \pi_1 > < \pi_2 > \varphi \} \cup S.$
\mathbf{R}_{j}	If $\sigma.\varepsilon :< \phi? > \varphi \in S$, and $\sigma.\varepsilon : \phi \notin S$ or $\sigma.\varepsilon : \varphi \notin S$,
	then $S_1 := \{ \sigma.\varepsilon : \phi, \sigma.\varepsilon : \varphi \} \cup S.$
R _{¬<? >}	If $\sigma.\varepsilon: \neg < \phi? > \varphi \in S$, $\sigma.\varepsilon: \neg \phi \notin S$, and $\sigma.\varepsilon: \neg \varphi \notin S$,
	then $S_1 := \{ \sigma.\varepsilon : \neg \phi \} \cup S, S_2 := \{ \sigma.\varepsilon : \neg \varphi \} \cup S.$
$\mathbf{R}_{<\cup>}$	$f \text{If } \sigma.\varepsilon :< \pi_1 \cup \pi_2 > \varphi \in S, \sigma.\varepsilon :< \pi_1 > \varphi \notin S,$
	and $\sigma.\varepsilon :< \pi_2 > \varphi \notin S$,
	then $S_1 := \{ \sigma.\varepsilon : < \pi_1 > \varphi \} \cup S, S_2 := \{ \sigma.\varepsilon : < \pi_2 > \varphi \} \cup S.$
$R_{\neg < \cup}$	$>_f \text{ If } \sigma.\varepsilon: \neg < \pi_1 \cup \pi_2 > \varphi \in S,$
	and $\sigma.\varepsilon: \neg < \pi_1 > \varphi \notin S$ or $\sigma.\varepsilon: \neg < \pi_2 > \varphi \notin S$,
	then $S_1 := \{ \sigma.\varepsilon : \neg < \pi_1 > \varphi, \sigma.\varepsilon : \neg < \pi_2 > \varphi \} \cup S.$

2007/8/22

Figure 2: Rules for formulas

E

prefixed tableau calculus

$\mathbf{R}_{\langle atom \rangle f} \text{ If } \sigma.\varepsilon: \langle (P,E) \rangle \varphi \in S, \text{ and } \{\sigma.\varepsilon: \phi \mid \phi \in P\} \not\subseteq S \text{ or there is no } p \in S \text{ or there is no } p \in S \text{ or there is no } p \in S \text{ or there is no } p \in S \text{ or there is no } p \in S \text{ or there is } p \in S \text{ or there is no } p \in S \text{ or there is no } p \in S \text{ or there is no } p \in S \text{ or there is } p \in S \text{ or there is no } p \in S \text{ or there is } p \in S \text{ or there } p \in S or t$	prefix $\sigma_i \cdot \varepsilon_i$
such that both $\varepsilon_i = (\varepsilon - \{\neg \varphi \varphi \in E\}) \cup E$ and $\sigma_i . \varepsilon_i : \varphi \in S$,	
then, introduce a prefix $\sigma'.\varepsilon':=\sigma; (P,E).(\varepsilon - \{\neg \varphi \varphi \in E\}) \cup E$, and	d
generate a branch $S_1 := \{ \sigma.\varepsilon : \phi \mid \phi \in P \} \cup \{ \sigma'.\varepsilon' : \varphi \} \cup \{ \sigma'.\varepsilon' : \psi \}$	$ \psi \in \varepsilon' \} \cup S.$
$\mathbf{R}_{\neg < atom > f} \text{ If } \sigma.\varepsilon: \neg < (P,E) > \varphi \in S, \text{ and } \{\sigma: \neg \phi \mid \phi \in P\} \ \cap \ S = \emptyset,$	
there is a prefix $\sigma_i \varepsilon_i$ with $\varepsilon_i = (\varepsilon - \{\neg \varphi \varphi \in E\}) \cup E$ and $\sigma_i \varepsilon_i$:	$\neg \varphi \notin S$,
then, $S_1 := \{\sigma_i . \varepsilon_i : \neg \varphi\} \cup S$, and	
for each $\phi \in P$ generate a branch $S_{\phi} := \{\sigma.\varepsilon : \neg\phi\} \cup S$.	

Figure 3: Forward generating rules

R_{Back1}	If $\sigma.\varepsilon: D(x) \in S$, D is of form $\exists R.C$ or $\neg \exists R.C$, where C is a concept,
	and $(\emptyset, \emptyset) . \emptyset : D^{Regress(\sigma, \varepsilon)}(x) \notin S$,
	then, $S_1 := \{(\emptyset, \emptyset) : D^{Regress(\sigma, \epsilon)}(x)\} \cup S.$
\mathbf{R}_{Back2}	If $\sigma \varepsilon : \varphi \in S$, φ is of form $R(x, y)$, $\neg R(x, y)$, $C(x)$, or $(\neg C)(x)$ with $C \in N_{CP}$,
	and $\varphi \notin \varepsilon$, $(\emptyset, \emptyset) . \emptyset : \varphi \notin S$,
	then, $S_1 := \{(\emptyset, \emptyset) : \emptyset : \varphi\} \cup S.$

satisfiability problem

• A formula ϕ is **satisfiable** if and only if there is a model M = (W, I)and a state $w \in W$ such that $(M, w) \models \phi$.

Algorithm 1 (Deciding the satisfiability of a formula) Let T and Ac be acyclic TBox and ActionBox respectively, and φ be a formula. Then, the satisfiability of φ with respect to T and Ac is decided with the following steps:

- Replace each occurrence of defined concept names in φ with their definitions, result in a formula φ'.
- Construct a branch S' := {(Ø, Ø).Ø : φ'}; If S' is contradictory, exit the algorithm with the result "φ is unsatisfiable".
- 3. Construct an empty stack SS, push the branch S' into SS.
- 4. Pop a branch from SS, let it be S, then:
 - if S is not completed, then find a rule to apply to S, with the constraint that R_{<atom>f}-rules can only be examined for applying as while as no other rules can be applied; For every new generated branch, replace each occurrence of defined concept names in it with the corresponding definitions, then, add the replaced branch into SS if it is not contradictory;
 - if S is completed but not ignorable, then exit the algorithm with the result "φ is satisfiable";
 - if S is ignorable then discard it.
- If SS is empty, then exit the algorithm with the result "φ is unsatisfiable", else goto step 4.

satisfiability problem

- *Theorem* 1: The satisfiability-checking algorithm is terminable, sound, and complete.
- *Theorem* 2: Let ϕ be a satisfiable formula. Then there exists a model M = (W, I) and a state $w \in W$ such that $(M, w) \models \phi$ and size $(M) \leq 2^{p(size(\phi))} \times \text{count}_\text{exist}(\phi)^{\text{count}_\text{exist}(\phi)}$, where p is a polynomial, count_\text{exist}(\phi) is the number of " \exists " occurring in ϕ .

other reasoning problems on formulas

- Entailment: A formula ϕ_2 is entailed by a formula ϕ_1 , if and only if $(M,w)|=\phi_2$ for every model M=(W, I) and every state $w \in W$ such that $(M,w)|=\phi_1$.
- Equivalence: A formula ϕ_2 is equivalent to a formula ϕ_1 , if and only if both ϕ_1 entails ϕ_2 and ϕ_2 entails ϕ_1 .
- Evaluation: A formula ϕ is holds on a situation specified by an ABox *A*, if and only if $(M, w) |= \phi$ for every model M = (W, I) and every state $w \in W$ such that (M, w) |= A.

All of these reasoning problems can be realized based on the satisfiability problem.

reasoning problems on concepts

- Satisfiability: A concept *C* is satisfiable if and only if there is a model M = (W, I) and a state $w \in W$ such that $C^{I(w)} \neq \emptyset$.
- Subsumption: A concept C_2 is subsumed by a concept C_1 , if and only if $C_2^{I(w)} \subseteq C_1^{I(w)}$ for every model M=(W, I) and every state $w \in W$.
- Equivalence: A concept C_2 is equivalent to a concept C_1 , if and only if $C_2^{I(w)} = C_1^{I(w)}$ for every model M = (W, I) and every state $w \in W$.
- **Disjointness:** A concept C_2 is disjoint with a concept C_1 , if and only if $C_2^{I(w)} \cap C_1^{I(w)} = \emptyset$ for every model M = (W, I) and every state $w \in W$.

All of these reasoning problems can be realized based on the satisfiability problem.

2007/8/22

Zhongzhi Shi: DDL

reasoning problems on actions

- Executability: An action π is executable on a situation specified by an ABox *A*, if and only if for every model M=(W, I) and every state $w_1 \in W$ such that $(M, w_1) \models A$: there exists a state $w_2 \in W$ such that $(w_1, w_2) \in \pi^I$.
- **Realizability**: An action π is realizable, if and only if there exist a model M = (W, I) and two states $w_1, w_2 \in W$ such that $(w_1, w_2) \in \pi^I$.
- Projection: To decide whether a formula φ really holds after executing an action π under certain situation specified by an ABox A.

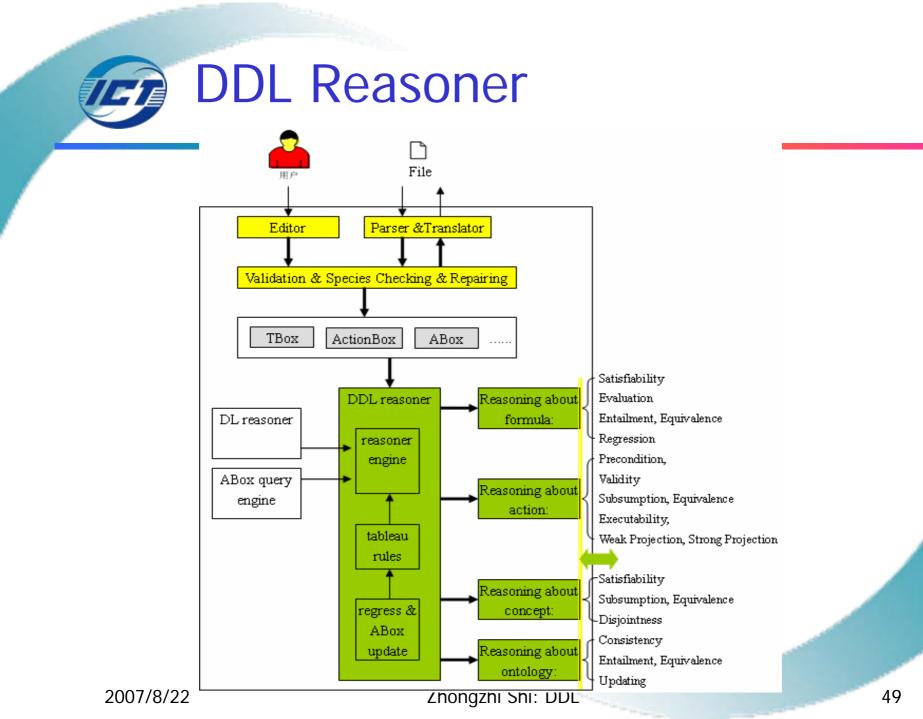
reasoning problems on actions

- Subsumption: An action π_2 is subsumed by an action π_1 , if and only if $\pi_2^{I} \subseteq \pi_1^{I}$ for every model M = (W, I).
- Equivalence: An action π_2 is subsumed by an action π_1 , if and only if $\pi_2^{I} = \pi_1^{I}$ for every model M = (W, I).

All of these reasoning problems can be realized based on the satisfiability problem.

reasoning problems on knowledge base

- Consistency: A knowledge base $K = \langle T, Ac, A \rangle$ is consistent, if and only if there exist a model M=(W, I) and a state $w \in W$ such that (M,w)|=K, i.e., M|=T and (M,w)|=A.
- Entailment: A knowledge base K_2 is entailed by a knowledge base K_1 , if and only if $(M, w) |= K_2$ for every model M = (W, I) and every state $w \in W$ such that $(M, w) |= K_1$.
- Equivalence: A knowledge base K_2 is equivalent to a knowledge base K_1 , if and only if both K_2 entails K_1 and K_1 entails K_2 .
- Updating: To construct a knowledge base K_2 that resulted from executing an action π on a knowledge base K_1 .



DDL Reasoner

DDL Version1.0 Intsci ICT

Add	Add	Add	Ontology Info Species Validation DDL RDF/XML Reasoning EditingXML	
Add GCI	Remove	Rename	<pre><dd1:actionaxiom v"="" xmlns:dd1="http://www.intsci.ac.cn/ddlreasoner/ddl#" xmlns:rdf="http://www.w3.org/</pre></td><td>1999</td></tr><tr><td>Add Action</td><td>Add Con</td><td>Add For</td><td><dd1:actionParameters>
<dd1:actionParameter_dd1:ID="></dd1:actionaxiom></pre>	
tion Concep	ot Formula Ind	ividual Property	<ddl:actionpreconditions></ddl:actionpreconditions>	
graduate succDegre	.D. f 1		<dd7:actionprecondition></dd7:actionprecondition>	
failDegre			<pre><dd1:conceptassertion> <dd1:conceptrefered rdf:resource="#student"></dd1:conceptrefered></dd1:conceptassertion></pre>	
degreeDef succMaste			<pre> </pre>	
failMaste	rDefend			
masterDef succPhdDe			 <ddl:actioneffects></ddl:actioneffects>	
failPhdDe	fend		<pre><dd1:actioneffect> <dd1:negformula></dd1:negformula></dd1:actioneffect></pre>	
PhdDefend			<pre><dd1:conceptassertion></dd1:conceptassertion></pre>	
			<pre><dd1:conceptrefered rdf:resource="#student"></dd1:conceptrefered> <dd1:individualrefered dd1:resource="v"></dd1:individualrefered></pre>	
				[

Zhongzhi Shi: DDL

DDL Reasoner

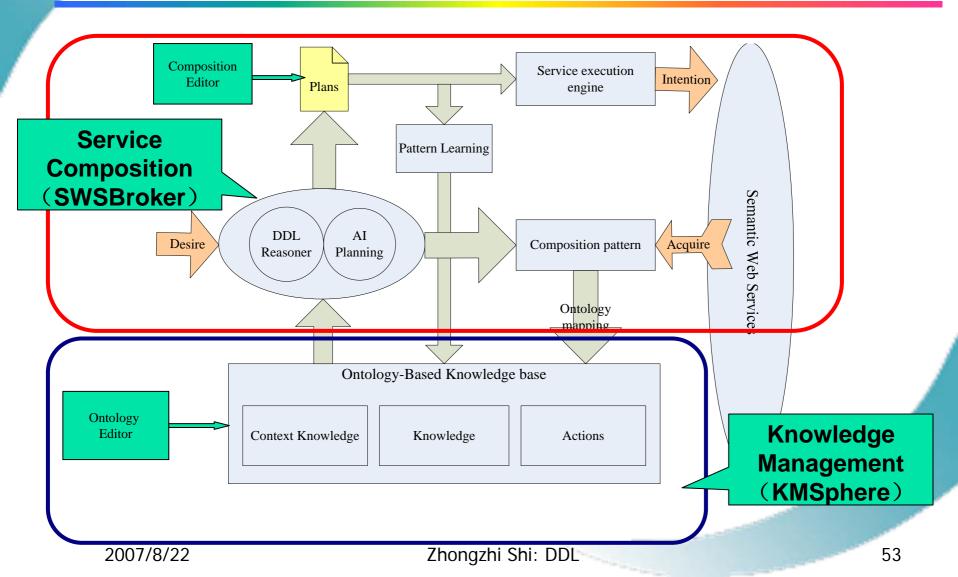
👙 DDL Versionl.O Ints	sci ICT	
File View Bookmarks Reso	ource Holder Ad	vanced About
Address:		
Add Add	Add	Ontology Info Species Validation DDL RDF/XML Reasoning EditingXML
Add GCI Remove	Rename	
Add Action Add Con	Add For	
		Action
Action Concept Formula Indiv	vidual Property	
graduate succDegreeDefend		Precondition
failDegreeDefend		PhdDefend (x); graduate (x)
degreeDefend		
succMasterDefend failMasterDefend		OK
masterDefend		
succPhdDefend		The result is: OR(AND(PhdCandidate(x), NEG(holdDegree(x, doctorDegree)))).
failPhdDefend PhdDefend		
		Reasoning type: Precondition calculation for Action.
		The action for reasoning is: PhdDefend(x);graduate(x). The result is: AND(OR(AND(PhdCandidate(x), NEG(holdDegree(x, doctorDegree)))), NEG(OR(AND(NEG(stuc
		for test: the new conceptassertion is:
		NEG(AND(OR(student, NOMINAL()), NEG(NOMINAL())))(x)
		for test: the init_node is as follows:
		Formula set:
		NEG(student)(x)
		OR()
		RoleTable:
		Apply Changes Undo Changes
/ #开始 🗧 Java -	TreeHash	🚔 DDL Version1. 0 I 🛅 😰 🖞 🚱 🔽 🌮 🧔 K 11:48
JAVA		

Zhongzhi Shi: DDL

Outline

- Introduction
- Description Logic
- Dynamic Description Logic
- DDL-Based Knowledge Representation
- DDL-Based Reasoning
- Applications
- Conclusions

SWSBroker: Semantic Web Services Platform:



SWSBroker Interface

🍰 Semantic∀S Explorer v0.	1						
File Repository Composite Help)						
OWL List	Service l	dentity					
http://www.mindswap.org/2004/o http://www.daml.org/services/ow							
http://www.mindswap.org/2004/o	Index:	2	2				
	OWL-S:	http://www.	daml.org/services/ov	wl-s/1.1/BravoAirGroundin	g.owl		
	Service F	Parameters					
	SomeRat		ame	http://www.daml.org/s	Value services/owl-s/1.1/Concepts.owl#		
		Geographic I	Radius		services/owl-s/1.1/Country.owl#Un		
	-Service (Categories –					
		lame	Code	Taxonomy	Value		
	NAICS UNSPSC		561599 90121500	www.naics.com www.un-spsc.net	Airline reservation services Travel Agent		
Consolo							
http://www.mindswap.org/2004/owl-s	s/1.1/Diction	ary.owl load	ed.		<u>^</u>		
Loading triples				05/04/			
[ProtegeOWLParser] Importing http:// [ProtegeOWLParser] Importing http://		P	=	•	tp://www.fiacp.fujitsulabs.com/tce/		
(ProtegeOWLParser) Importing http://		-					
	· • • • • • • • • • • • • • • • • • • •	org/services.	/owi-s/1.1/Profile.owi				

SWDL TO OWL-S

Operations	Service information							
jetPhoto	Service Name	getPhoto						
		Auto generated fro http://www.mindsw		ddressPhotoServi	ice.wsdl			
	Logical URI	http://www.intsci.a	c.cn/owls/getPhot	o.owl#				
	Inputs	Inputs						
	WSDL Parameter		OWL-S Name	OWL Type	XSLT			
	inO	services:Address	in0	owl:Thing				
	WSDL Parameter return	r WSDL Type soapEnc:string	OWL-S Name return	OWL Type xsd:string	XSLT			
	Namespaces			II. 2002				
	Abbr		URI					
		://www.w3.org/2001						
		org:mindswap:sen						
	rdf http	tp://www.w3.org/1999/02/22-rdf-syntax-ns# tp://www.w3.org/2002/07/owl#						
		(MAAAAAAAAA) W3 org(200)	2011 ((ow/#					

Outline

- Introduction
- Description Logic
- Dynamic Description Logic
- DDL-Based Knowledge Representation
- DDL-Based Reasoning
- Applications
- Conclusions

Conclusions

DDL: embracing action formalism into DL

- atomic actions are described by their preconditions and effects, which are represented over ontologies expressed in DL;
- complex actions can be constructed with the help of standard action constructors;
- actions can be used as modal operators to construct concepts and formulas.
- A prefixed tableau calculus was provided, based on which a terminable, sound, and complete satisfiability checking algorithm was designed.

Conclusions

- Typical reasoning problems on formula, concept, action, and knowledge base were studied.
- A DDL reasoner was developed to support all these reasoning problems.
- The DDL reasoner was combined with AI planner in SWSBroker, which supports the description, matching, and composition of semantic web services.

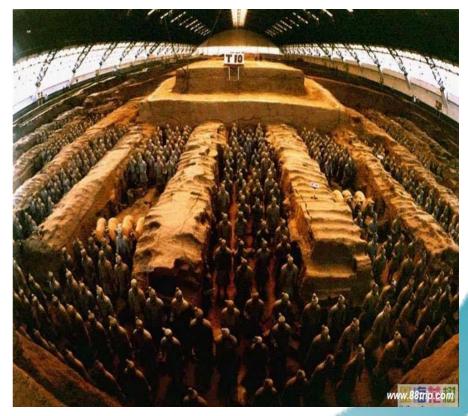
Conclusions

- Contributions of DDL:
 - Provides an approach to extend DL for describing concepts with dynamic meanings;
 - Provides an approach to fill the gap between action formalisms based on first- or high-order logics and those based on propositional logics;
 - Provides an approach to combine the static descriptions of the information provided by ontologies with the dynamic descriptions of the computations provided by web services.

Thank You

Intelligence Science http://www.intsci.ac.cn/

Enjoy Xi'an



Zhongzhi Shi: DDL