
Clustering in extreme learning machine feature space

Qing He a,n, Xin Jin a,b, Changying Du a,b, Fuzhen Zhuang a, Zhongzhi Shi a

a Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China

a r t i c l e i n f o

Article history:
Received 28 August 2012
Received in revised form
3 December 2012
Accepted 21 December 2012
Available online 24 October 2013

Keywords:
Extreme learning machine (ELM)
ELM feature space
Data clustering
Nonnegative matrix factorization (NMF)
ELM kMeans
ELM NMF clustering

a b s t r a c t

Extreme learning machine (ELM), used for the “generalized” single-hidden-layer feedforward networks
(SLFNs), is a unified learning platform that can use a widespread type of feature mappings. In theory, ELM
can approximate any target continuous function and classify any disjoint regions; in application, many
experiment results have already demonstrated the good performance of ELM. In view of the good
properties of the ELM feature mapping, the clustering problem using ELM feature mapping techniques
is studied in this paper. Experiments show that the proposed ELM kMeans algorithm and ELM NMF
(nonnegative matrix factorization) clustering can get better clustering results than the corresponding
Mercer kernel based methods and the traditional algorithms using the original data. Moreover, the
proposed methods have the advantage of being more convenient to implementation and computation,
as the ELM feature mapping is much simpler than the Mercer kernel function based feature mapping
methods.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cluster analysis or clustering is the task of assigning a set of
objects into groups (called clusters) so that the objects in the same
cluster are more similar to each other than to those in other
clusters. No matter in the past or at present, being an important
problem in data mining, clustering has attracted many researchers’
attentions and efforts, resulting in many cluster models. These
models include hierarchical clustering [1,2], centroid-based clus-
tering (such as kMeans [3]), clustering models related to statistics
[4] and density based clustering [5,6]. Based on matrix theory,
many methods are also used in clustering, such as a latent
semantic indexing method [7], spectral clustering [8] and non-
negative matrix factorization (NMF) [9]. It is acknowledged that
through a nonlinear data transformation, the data will become
more linear separable in the transformed high dimensional feature
space, that is, data structure becomes much simpler. To take
advantage of the feature mapping techniques, kernel methods
have been used for clustering [10–12], and better results are got.
Being an explicit feature mapping technique, ELM feature mapping
[13,14] is more convenient than the kernel function based meth-
ods. In addition, replacement of SVM kernels with random ELM
kernels can get more satisfactory results for classification and

regression [15–17]. So, studying the clustering problem using ELM
feature mapping techniques is meaningful.

The extreme learning machine (ELM) [18,19] was originally
proposed as a new learning algorithm for single-hidden layer
feedforward neural networks (SLFNs). Unlike those conventional
iterative implementations, ELM randomly chooses input weights
and hidden biases and then analytically determines the output
weights of SLFNs. Afterwards, ELM was extended to the “general-
ized” SLFNs where the nodes need not be neuron alike [13,14].
Different from traditional learning algorithms for a neural type of
SLFNs [20], ELM aims to reach not only the smallest training error
but also the smallest norm of output weights. The learning process
of ELM includes two steps. First, the input vectors are mapped into
a feature space, which are the hidden layer output vectors. Then,
the standard optimization method is used to find the solution that
minimizes the training errors.

As a unified learning method for regression and multiclass
classification, ELM tends to have better scalability and achieve
similar or much better generalization performance at much faster
learning speed than traditional SVM and LS-SVM [21,22]. Initially,
ELM [18,19] and its variants [23–26] mainly focus on the regres-
sion applications. Latest development of ELM has shown some
relationships between ELM and SVM [15,17]. To the best of our
knowledge, [15] is the first paper that tries to use ELM kernels in
SVM, and Huang et al. [17] demonstrated that SVM's maximal
separating margin property and ELM's minimal norm of output
weights property are actually consistent. Further, in theory ELM
can be linearly extended to SVMs instead of only replacing
SVM kernels with ELM kernels. Also, ELM uses less optimization

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2012.12.063

n Corresponding author.
E-mail addresses: heq@ics.ict.ac.cn (Q. He), sdjinxin@gmail.com,

jinx@ics.ict.ac.cn (X. Jin).

Neurocomputing 128 (2014) 88–95

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2012.12.063
http://dx.doi.org/10.1016/j.neucom.2012.12.063
http://dx.doi.org/10.1016/j.neucom.2012.12.063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.063&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.063&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.063&domain=pdf
mailto:heq@ics.ict.ac.cn
mailto:sdjinxin@gmail.com
mailto:jinx@ics.ict.ac.cn
http://dx.doi.org/10.1016/j.neucom.2012.12.063

constraints. Frénay et al. [16] proposed a new parameter-
insensitive kernel inspired from extreme learning and used it in
nonlinear SVR (Support Vector Regression). Their method signifi-
cantly reduced the computational complexity. The reason why
ELM kernel can be used in SVM and get better performance may
lie in that ELM has Universal Approximation Capability [13,14,23],
which means that ELM can approximate any continuous target
functions, and Classification Capability [21], which implies that
ELM can classify any disjoint regions. In view of the advantages of
the ELM and their better performance in regression and classifica-
tion, we conjecture that clustering in ELM feature space would
also get excellent results.

As the extreme learning machine has been demonstrated to
have better performance in regression and classification, and in
theory ELM has Universal Approximation Capability and Classifica-
tion Capability, this means after ELM feature transformation
process, the data structure becomes much simpler. Also, using
ELM feature mapping techniques in SVM and its variants can get
improved performance [15,17], which is a manifestation of the
usefulness of the ELM feature mapping techniques. Inspired by the
fact that Mercer kernel based feature transformation methods can
be used in clustering [10–12] and in NMF [27] to get better results,
in this paper, we explore the methods directly using the ELM
feature mapping techniques in clustering, resulting in the kMeans
algorithm in ELM feature space, and explore the NMF in ELM
feature space and then do the clustering in the low-dimensional
representation got from the NMF.

The rest of the paper is organized as follows: in Section 2, a
brief review of ELM is given. Section 3 introduces our clustering
algorithms using ELM feature mapping techniques. Extensive
experimental results on clustering are presented in Section 4.
Finally, some concluding remarks are provided in Section 5.

2. Preliminary knowledge

A word about our notations. AT denotes the transpose of a
matrix A, tr(A) means the trace operator of the corresponding
matrix A. The inner product is explicitly represented by the
operator 〈α � β〉 or use αTβ for convenience. J � J denotes the
Frobenius norm, and AZ0 represents the matrix with nonnegative
values.

Originally proposed for the single hidden-layer feedforward
neural networks, extreme learning machine (ELM) has been
extended to the generalized SLFNs where the hidden layer need
not be neuron alike [13,14]. In ELM, the hidden layer parameters,
which are randomly initialized, need not be tuned. The output
function of ELM for generalized SLFNs (take one output node case
as an example) is

f ðxÞ ¼ ∑
L

i ¼ 1
βihiðxÞ ¼ hðxÞβ ð1Þ

where β¼ ½β1;…;βL�T is the vector of the output weights between
the L hidden-layer nodes and the output node and hðxÞ ¼
½h1ðxÞ;…;hLðxÞ� is the output (row) vector of the hidden layer with
respect to the input x. h(x) actually maps the data from the
d-dimensional input space to the L-dimensional hidden-layer
feature space (ELM feature space) H, and thus, h(x) is indeed a
feature mapping. For the binary classification applications, the
decision function of ELM is

f ðxÞ ¼ sign ðhðxÞβÞ: ð2Þ
Different from traditional learning algorithms [20], ELM tends to
reach not only the smallest training error but also the smallest
norm of output weights [21]. The classification problem for
the proposed constrained-optimization-based ELM with a single

output node can be formulated as

Minimize : LPELM ¼ 1
2
JβJ2þC

1
2

∑
N

i ¼ 1
ξ2i

Subject to : hðxiÞβ¼ ti�ξi; i¼ 1;…;N ð3Þ
Based on the KKT conditions, one solution can be obtained as
follows. The output function of the ELM classifier is

f ðxÞ ¼ hðxÞβ¼ hðxÞHT I
C
þHHT

� ��1

T ð4Þ

where T ¼ ½t1;…; tN �T ; H ¼ ½hðx1Þ;…;hðxNÞT . For multiclass classifi-
cations, among all the multiclass labels, the predicted class label of
a given testing sample is closest to the output of ELM classifier.

In the implementation of ELM, it is found that the generalization
performance of ELM is not sensitive to the dimensionality of the
feature space (L) and good performance can be reached as long as L is
large enough. Setting L¼1000 can always get satisfactory results, no
matter whatever the size of the training data sets is [21].

3. Clustering in ELM feature space

ELM maps the original data into the ELM feature space, and then,
by constructing a linear decision function (Eq. (1)), find the classifier
in the feature space, which can get better results. Also, kernel
methods have been used to do the clustering in the kernel space
[10–12], and they also obtain encouraging performance. Since
classification in the ELM feature space can get better results, we
introduce the methods to do the clustering in the ELM feature space.

3.1. ELM feature mapping process

Suppose each input data is a d-dimensional vector x¼ ½x1;…;

xi;…; xd�T , through a single hidden layer feed forward neural
networks, ELM will map the data into the L-dimensional ELM
feature space (hidden layer feature space) H, and L is the number
of the hidden nodes used in the feature mapping process, as is
shown in Fig. 1.

The feature mapping can be formally described as follows:

hðxÞ ¼ ½h1ðxÞ;…;hiðxÞ;…;hLðxÞ�T
¼ ½Gða1; b1; xÞ;…;Gðai; bi; xÞ;…;GðaL; bL; xÞ�T ð5Þ

where Gðai; bi; xÞ is the output of the i-th hidden node, ai is a
d-dimensional weight vector between the d input nodes and the ith
hidden-node, bi is the bias of the ith hidden-node. The parameters
used in the mapping process, ðai;biÞLi ¼ 1, can be randomly generated
according to any continuous probability distribution, and they need

x 1[x]Tdx

1[()h x ()ih x ()]TLh x=()h x

1 1(, ,)G a b x (, ,)i iG a b x (, ,)L LG a b x

1 i L

1 dinput layer nodes

hidden layer

Fig. 1. ELM feature mapping process.

Q. He et al. / Neurocomputing 128 (2014) 88–95 89

not be tuned, so ELM feature mapping is very efficient. Also,
different from SVM, LS-SVM and PSVM, the feature mapping
hðxÞ ¼ ½h1ðxÞ;…;hiðxÞ;…;hLðxÞ�T is usually known to users, and
we can directly use it instead of using the kernel functions, which
maybe simpler in some problems. According to [13,14], almost
all nonlinear piecewise continuous functions can be used as the
hidden-node output functions, and thus, the feature mappings used
in ELM can be very diversified. The most frequently used function is
the Gaussian function in Eq. (6), some other nonlinear piecewise
continuous functions that satisfy the ELM universal approximation
capability theorems can be found in [21]:

Gða; b; xÞ ¼ expð�bJx�aJ2Þ: ð6Þ
Using Eq. (5), it is very easy to transform the data from the

original input feature space into the ELM feature space. The feature
mapping process is explicit, and we can choose the functions that
have the desired properties for particular problems to be solved. In
SVM and its variants, the feature mapping may be unknown. Using
ELM feature mapping techniques, we can get the exact data in the
feature space, which is more convenient than the inner product
form information in the feature space that using kernel functions.

3.2. The rationality of ELM feature mapping

On behalf of the ELM feature mapping, ELM can have many
good properties, and the clustering problems can also take
advantage of these feature mappings. According to ELM learning
theory, a widespread type of feature mappings h(x) can be used in
ELM so that ELM can approximate any continuous target functions
(refer to [13,23] for details). That is, given any target continuous
function f(x), there exists a series of βi such that

lim
L-þ1

J f LðxÞ� f ðxÞJ ¼ lim
L-þ1

∑
L

i ¼ 1
βihiðxÞ� f ðxÞ

����
����¼ 0 ð7Þ

Seen from Eq. (7), it can be recognized that ELM can approximate
any continuous functions just using a linear function in the ELM
feature space, whereas a linear function in the original feature space
that can approximate the continuous function may not exist. On the
other hand, in SVM, LS-SVM, and PSVM, which are implemented by
using kernel functions, the feature mapping ϕðxiÞ may be unknown,
usually not every feature mapping to be used in SVM and its variants
satisfy the universal approximation condition. Obviously, a learning
machine with a feature mapping which does not satisfy the universal
approximation condition cannot get satisfactory results.

Huang et al. also proved the classification capability of ELM [21].

Definition 3.1. A closed set is called a region regardless of
whether it is bounded or not.

Lemma 3.1. Given disjoint regions K1;K2;…;Km in Rd and the
corresponding m arbitrary real values c1; c2;…; cm, and an arbitrary
region X disjointed from any Ki, there exists a continuous function f(x)
such that f ðxÞ ¼ ci if xAKi and f ðxÞ ¼ c0 if xAX, where c0 is an
arbitrary real value different from c1; c2;…; cm.

Theorem 3.1. Given a feature mapping h(x), if hðxÞβ is dense in CðRdÞ
or in C(M), where M is a compact set of Rd, then a generalized SLFN
with such a hidden-layer mapping h(x) can separate arbitrary
disjoint regions of any shapes in Rd or M.

Theorem 3.1 shows that if hðxÞβ can approximate any contin-
uous functions, then ELM can separate any decision regions
regardless of shapes of these regions, that is, ELM can classify
any data sets if they does not overlap. All these good properties of
the ELM feature mapping may help the clustering problem in the
ELM feature space.

3.3. Clustering using ELM feature mapping techniques

With the notion that performing a nonlinear data transforma-
tion into some high dimensional feature space increases the
probability of the linear separability of the patterns within the
transformed space and therefore simplifies the associated data
structure, many Mercer kernel based clustering algorithms in the
transformed feature space have been proposed [10–12]. However,
in these methods, since the feature mapping ϕðxiÞ is always
implicit, they must make use of the kernel functions, which is
not efficient for computation. Furthermore, in sometimes, when
the explicit representation in the transformed feature space is
required, the kernel function method does not work. Also, without
the explicit form of the feature mapping, we cannot guarantee that
the feature mapping to be used in clustering satisfies the universal
approximation condition, which may affect the performance of the
algorithm. Thus, the explicit feature mapping methods such as
ELM feature mapping may be more appropriate.

3.3.1. kMeans algorithm in ELM feature space
Compared to the kernel based methods, clustering in the ELM

feature space is more convenient. First, we transform the original
data into the ELM feature space using Eq. (5). The mapping is very
intuitive and straightforward (see Fig. 1), and according to the ELM
universal approximation conditions, many nonlinear piecewise
continuous functions can be used as the hidden-node output
functions. The only parameter needs to be specified by the users
is the number of the nodes in the hidden layer. According to the
ELM universal approximation conditions and classification cap-
ability (Eq. (7)), a very large number of nodes can guarantee that
the data will become linear separable, so we can set the parameter
to a large enough number. After transforming the data into the
ELM feature space, the traditional clustering method can be used
directly. In this part, we use the simple kMeans algorithm and
call the kMeans algorithm in ELM feature space as ELM kMeans
algorithm for short. kMeans clustering problem can be described
as follows: given a set of observations ðx1; x2;…; xmÞ, where each
observation is a d-dimensional real vector, kMeans clustering aims
to partition the m observations into k sets ðkrmÞ S¼ fS1; S2;…; Skg
so as to minimize the within-cluster sum of squares (WCSSs):

arg min
S

∑
k

i ¼ 1
∑

xj A Si

‖xj�μi‖
2 ð8Þ

where μi is the mean of points in Si. The detailed description of the
ELM kMeans algorithm is shown in Algorithm 1.

Algorithm 1. ELM kMeans algorithm.

Input:
k: the number of clusters,
L: the number of the hidden-layer nodes,
D: a data set containing m objects.

Output:
A set of k clusters.

Method:
1: Mapping the original data objects in D into the ELM feature

space H using hðxÞ ¼ ½h1ðxÞ;…;hiðxÞ;…;hLðxÞ�T ;
2: Arbitrarily choose k objects from H as the initial cluster

centers;
3: repeat
4: (Re)assign each object to the cluster to which the object is

the most similar, based on the mean value of the objects in
the cluster;

5: Update the cluster means, i.e., calculate the mean value of
the objects for each cluster;

Q. He et al. / Neurocomputing 128 (2014) 88–9590

6: until no change in the cluster centers or reached the
maximal iteration number limit.

7: return A set of k clusters.

3.3.2. Clustering based on NMF in ELM feature space
Nonnegative matrix factorization (NMF) is a recently proposed

linear method for finding low-dimensional representation of
nonnegative high-dimensional data. Having the part-based repre-
sentation property [28], NMF and its variations have been applied
to a variety of applications, such as image classification, face and
object recognition, document clustering, etc. [29]. It has been
shown that the NMF based document clustering method surpasses
SVD clustering methods and the spectral clustering methods
according to the clustering accuracy [9]. NMF is a linear model,
using nonlinear feature mapping techniques, it will be able to deal
with nonlinear correlation in data, so kernel methods have been
used in NMF. It must be aware that using kernel methods in NMF
is not so straightforward, therefore Buciu et al. [30] require that
the kernel functions must be differentiable functions and Zhang
et al. [27] makes some approximations in the computation.
Obviously, as an explicit feature mapping technique, ELM feature
mapping can be used in NMF as well, and it could be much
simpler.

As described in the previous section, ELM feature mapping has
many good properties. As ELM feature mapping is explicit, NMF in
the ELM feature space is more convenient than the kernel based
methods. Clustering based on NMF in ELM feature space is also very
straightforward. First, we transform the original data into the ELM
feature space using Eq. (5). The mapping is very intuitive (see Fig. 1),
and according to the ELM universal approximation conditions, many
nonlinear piecewise continuous functions can be used as the hidden-
node output functions. The only parameter need to be specified by
the users is the number of the nodes in the hidden layer. Then, after
applying traditional NMF methods in the ELM feature space, the low-
dimensional representation of the data can be easily got. Using any
clustering methods to the low-dimensional data can obtain the
clustering result we want. For the simplicity, we choose the widely
used kMeans algorithm in the final step. The detailed description of
clustering based on NMF in ELM feature space is shown in Algorithm
2. It must be noted that only the activation functions that can only
get nonnegative outputs can be used in Step 1 of Algorithm 2, or
some postprocess be done to the result of the feature mappings to
guarantee that they are nonnegative.

Algorithm 2. Clustering based on NMF in ELM feature space (ELM
NMF).

Input:
k: the number of clusters,
L: the number of the hidden-layer nodes,
D: a data set containing m objects,
ɛ: A small threshold ɛ40.

Output:
A set of k clusters.

Method:
1: Mapping the original data objects in D into the ELM feature

space using hðxÞ ¼ ½h1ðxÞ;…;hiðxÞ;…;hLðxÞ�T , all the data will
form a data matrix in ELM feature space as a L�m matrix
H ¼ ½hðx1Þ;…;hðxjÞ;…;hðxmÞ�T .

2: Generate initial nonnegative matrices W0 and B0 with
dimensions L� k and k�m respectively.

3: repeat
4: For given W, update the matrix B as

Btþ1
au ¼ Bt

auðWTHÞau=ðWTWBtÞau.

5: For given B, update the matrix W as

Wtþ1
ia ¼Wt

iaðHBT Þia=ðWtBBT Þia.
6: err ¼max JWt þ 1 �Wt Jffiffiffiffi

Lk
p ; JB

t þ 1 �Bt Jffiffiffiffiffi
km

p
n o

7: until erroɛ or reached the maximal iteration number limit.
8: Using kMeans algorithms to cluster the data in the low-

dimensional space B (details of kMeans algorithm can be
found in Algorithm 1);

9: return A set of k clusters.

4. Experiments and results

In this section, the performance of the kMeans clustering
algorithm in ELM feature space and the clustering method based
on NMF in ELM feature space is compared with the classical
clustering methods and the corresponding kernel based methods.

4.1. Data sets

Three data sets are used in the experiments. Two of them are
from the UCI Machine Learning Repository [31] and the third one
is a document corpus. The description and some preprocesses
about these data sets are given below:

(1) Synthetic Control Chart Time Series Data Set (Synthetic Con-
trol for short) [31]: This data set contains 600 examples of
control charts synthetically generated by the process in Alcock
and Manolopoulos. There are six different classes of control
charts, each class has 100 examples. The data has 60 real
attributes, and we normalize each attribute into [0,1] using
the min–max normalization method, mainly consider that the
NMF requires that the data must be nonnegative. For the
algorithms based on ELM, same as the ELM implementation
reported by Zhu et al. [32], each attribute is normalized into
[�1,1]. Min–max normalization performs a linear transforma-
tion on the original data. Suppose that minA and maxA are the
minimum and maximum values of an attribute, A, min–max
normalization maps a value, v, of A to v′ in the range
½new_min;new_max� by computing

v′¼ v�minA

maxA�minA
ðnew_max�new_minÞþnew_min: ð9Þ

(2) Libras Movement Data Set [31]: The data set contains 15
classes, each contains 24 instances, where each class refer-
ences to a hand movement type in LIBRAS. As the data are
gathered after a video pre-processing procedure, and a map-
ping operation has been done by the data provider to facilitate
the analysis of these data, we use the data provided by the UCI
directly without any preprocessing and normalization.

(3) NIST Topic Detection and Tracking (TDT2) corpus [33]: The
TDT2 corpus consists of data collected during the first half of
1998 and taken from 6 sources, including 2 newswires (APW,
NYT), 2 radio programs (VOA, PRI) and 2 television programs
(CNN, ABC). It consists of 11 201 on-topic documents which
are classified into 96 semantic categories. In this experiment,
those documents appearing in two or more categories were
removed, and only the largest 30 categories were kept. Also,
for the categories that contain more than 100 documents, we
randomly selected 100 documents from each category, thus
leaving us with 2651 documents in total. We use the tf-idf
weight scheme to compute the weight of each term in
each document, i.e., tf-idf ¼ tf � idf , and tf is weighted as
1þ log ðtf Þ if tf 40, idf ¼ log ðN=df Þ, and each document vector
is normalized to have length 1. In respect that there are too

Q. He et al. / Neurocomputing 128 (2014) 88–95 91

many terms in the corpus, principal component analysis [34] is
used to select the more effective features and the dimension of
the data set is reduced to 200 (NMF based methods use the
original data as they can find the low-dimensional representa-
tions themselves).

4.2. Evaluation of clustering

Typical objective functions in clustering formalize the goal of
attaining high intra-cluster similarity and low inter-cluster simi-
larity. This is an internal criterion for the quality of a clustering. But
good scores on an internal criterion do not necessarily translate
into good effectiveness in an application. An alternative to internal
criteria is direct evaluation in the application of interest. We can
then compute an external criterion that evaluates how well the
clustering matches the gold standard classes. Xiong et al. [35]
explained many evaluation measures, and two external criteria of
clustering quality will be used in this paper.

(1) Purity is a simple and transparent evaluation measure: To
compute purity, each cluster is assigned to the class which is
most frequent in the cluster, and then the accuracy of this
assignment is measured by counting the number of correctly
assigned documents and dividing by N, N is the number of the
samples to be clustered. Formally,

purityðS;CÞ ¼ 1
N
∑
k
max

j
sk \ cjj
�� ð10Þ

where S¼ fs1; s2;…; sKg is the set of clusters and C ¼
fc1; c2;…; cJg is the set of classes. We interpret sk as the set of
data samples in sk and cj as the set of data samples in cj in
Eq. (10). It is obvious that high purity is easy to achieve when
the number of clusters is large—in particular, purity is 1 if each
sample is viewed as a cluster. But it does not matter here in
that we require the number of clusters is fixed to the true
number of classes.

(2) A measure that can trade off between the quality of the
clustering and the number of clusters is normalized mutual
information or NMI:

NMIðS;CÞ ¼ IðS;CÞ
½HðSÞþHðCÞ�=2 ð11Þ

I is mutual information:

IðS;CÞ ¼∑
k
∑
j
Pðsk \ cjÞ log

Pðsk \ cjÞ
PðskÞPðcjÞ

¼∑
k
∑
j

jsk \ cjj
N

log
Njsk \ cjj
jskjjcjj

ð12Þ

where PðskÞ, PðcjÞ, and Pðsk \ cjÞ are the probabilities of a data
sample being in cluster sk, class cj, and in the intersection of sk
and cj, respectively. H is entropy

HðSÞ ¼ �∑
k
PðskÞlog PðskÞ ¼ �∑

k

jskj
N

log
jskj
N

ð13Þ

IðS;CÞ in Eq. (12) measures the amount of information by
which our knowledge of the classes increases when we are
told what the clusters are. NMI is always a number between
0 and 1.

4.3. Compared algorithms

For the kMeans algorithm in ELM feature space proposed in
Section 3.3.1 (ELM kMeans Algorithm for short), to clearly display

the performance of it, we compared the following three clustering
algorithms:

(1) Canonical kMeans clustering method (kMeans in short).
(2) Kernel kMeans clustering algorithm [10]: Similar to the ELM

kMeans algorithm that do the clustering in the transformed
feature space, kernel methods have been used for clustering
[10–12], and better results are got. Specifically, we use the
widely used Gaussian kernel function in the kernel clustering
algorithm. The parameter selection will be given later.

(3) ELM kMeans algorithm: In this paper, we use the Gaussian
function as the hidden-layer node activation function, the selec-
tion of the number of the hidden-layer nodes will be discussed in
the later section.

For the clustering algorithm based on NMF in ELM feature
space proposed in Section 3.3.2 (ELM NMF algorithm for short), to
explicitly show its performance, we compared the following three
clustering algorithms:

(1) NMF clustering algorithm: First, we use NMF [36] to get a low-
dimensional representation of the original data, specifically,
the dimension of the low-dimension representation is set
equal to k, i.e., the number of the clusters. Then, we use the
canonical kMeans algorithms in the low-dimensional space to
get the clustering results.

(2) Kernel NMF clustering algorithm: First, we use the NMF in the
flexible kernel space which may find nonlinear correlation in
the data [27]. Consequently, we can get a low-dimensional
representation of the original data, and the dimension of the
low-dimension representation is the number of the clusters.
Then, we use the canonical kMeans algorithms in the low-
dimensional space to get the final clustering results.

(3) ELM NMF algorithm proposed in Section 3.3.2: Also, the
dimension of the low-dimension representation is the same
as the number of the clusters. Gaussian function is chosen as
the hidden-layer nodes activation function, the selection of
the number of the hidden-layer nodes will be discussed in the
later section.

4.4. Quality of the clustering results

We run the clustering algorithms on the three data sets
described in Section 4.1. As these algorithms are stochastic, we
run every algorithm 20 times on each data set and get the average
result. To get the performance of these algorithms with different
cluster numbers, for each data set, we select portions of these data
sets with different numbers of categories, and test the algorithms
on the selected data. The number of nodes used in every data set
in the ELM feature mapping and the setting of parameter s for
kernel based methods are given in Table 1 (ELM based methods
are not sensitive to the parameters, but the kernel based methods
need particular s value for a specific data set). The evaluation
measures used in this paper are purity and NMI described in
Section 4.2.

Tables 2–4 show the clustering results of kMeans, Kernel
kMeans and ELM kMeans algorithms on the Synthetic Control,
Libras Movement and TDT2 data sets, respectively. It can be seen
that, on all the three data sets, ELM kMeans gets better results
with all the different cluster numbers than the other two
algorithms.

Tables 5–7 show the clustering results of NMF clustering,
kernel NMF clustering and ELM NMF clustering algorithms on
the Synthetic Control, Libras Movement and TDT2 data sets, respec-
tively. It can be seen that, on Synthetic Control data set, ELM NMF

Q. He et al. / Neurocomputing 128 (2014) 88–9592

clustering algorithm is superior to the other two algorithms with
all the different cluster numbers. On Libras Movement and TDT2
data sets, most of the time, NMF ELM clustering algorithm can get
better results than the other two algorithms.

Over all, we can see that ELM based methods, i.e., ELM kMeans
and ELM NMF clustering, is better than the kernel kMeans and
kernel NMF methods on all the three data sets, respectively. It
must be noted that our ELM based methods, which only need to
add a ELM feature mapping process, are very convenient both for
implementation and computation. Kernel methods need to use
kernel functions because the feature mapping is always implicit.

4.5. Parameter selection

For the clustering algorithms in ELM feature space, we choose
the Gaussian function (Eq. (6)) as the hidden-layer nodes activa-
tion function. One of the advantages of ELM is that the parameters
used in the mapping process (Eq. (5)), ðai; biÞLi ¼ 1, can be randomly
generated according to any continuous probability distribution,
and they need not be tuned. The only parameter that needs to be
specified by the users is the number of the hidden-layer nodes.
Seen from Eq. (7), it can be found that ELM can use a large enough
number of nodes to get good performance in regression and
classification. For clustering, the relationship between the result
quality and the number of nodes may be the same, which we will
describe later. For the Mercer kernel based methods, we use the
Gaussian radial basis function as the kernel function, which is as
follows:

kðxi; xjÞ ¼ exp � ‖xi�xj‖2

2s2

 !
ð14Þ

The parameter s in Gaussian radial basis function need to be
specified by the users, which can be selected by experiments.

For the algorithms in ELM feature space, to test how the
number of hidden-layer nodes affects the performance, we run
the algorithm with a wide range of different nodes. Specifically, 29

Table 1
Parameter settings for different algorithms.

Data sets ELM kMeans
(nodes)

ELM NMF
(nodes)

Kernel
kMeans (s)

Kernel
NMF (s)

Synthetic control 1000 1000 0.5 1
Libras movement 1000 1000 8 0.25
TDT2 2000 2000 4 1

Table 2
kMeans based clustering performance on Synthetic Control data set.

Number of
clusters

Purity (100%) NMI

kMeans Kernel
kMeans

ELM
kMeans

kMeans Kernel
kMeans

ELM
kMeans

2 91.5 68.5 100.0 0.776 0.276 1.000
3 96.6 79.4 100.0 0.942 0.729 1.000
4 93.6 67.8 100.0 0.907 0.756 1.000
5 71.0 64.7 93.3 0.834 0.755 0.886
6 64.3 65.4 88.4 0.769 0.738 0.833

Table 3
kMeans based clustering performance on Libras Movement data set.

Number of
clusters

Purity (100%) NMI

kMeans Kernel
kMeans

ELM
kMeans

kMeans Kernel
kMeans

ELM
kMeans

3 64.5 52.7 65.3 0.481 0.254 0.500
5 65.6 57.8 69.8 0.583 0.497 0.626
7 52.9 50.8 55.0 0.496 0.490 0.535
9 52.9 49.1 54.1 0.523 0.510 0.558
11 49.1 45.0 50.7 0.575 0.542 0.599
13 45.1 44.4 47.2 0.589 0.565 0.614
15 44.5 43.6 45.6 0.595 0.573 0.605

Table 5
NMF based clustering performance on Synthetic Control data set.

Cluster
number

Purity (100%) NMI

NMF Kernel NMF ELM NMF NMF Kernel NMF ELM NMF

2 73.6 88.9 100.0 0.326 0.618 1.000
3 72.2 66.1 100.0 0.780 0.708 1.000
4 66.2 77.1 100.0 0.799 0.782 1.000
5 68.8 69.3 90.5 0.799 0.753 0.886
6 55.3 63.8 83.5 0.702 0.691 0.835

Table 6
NMF based clustering performance on Libras Movement data set.

Cluster
number

Purity (100%) NMI

NMF Kernel NMF ELM NMF NMF Kernel NMF ELM NMF

3 56.7 57.3 64.4 0.255 0.368 0.440
5 63.6 67.4 64.6 0.598 0.589 0.579
7 61.4 60.1 59.9 0.607 0.588 0.596
9 56.9 60.2 58.4 0.576 0.597 0.610
11 51.8 52.5 52.6 0.598 0.618 0.625
13 48.9 48.3 49.1 0.596 0.612 0.624
15 47.4 46.1 48.7 0.596 0.608 0.628

Table 7
NMF based clustering performance on TDT2 data set.

Cluster
number

Purity (100%) NMI

NMF Kernel NMF ELM NMF NMF Kernel NMF ELM NMF

10 89.3 87.7 94.5 0.906 0.918 0.905
15 85.3 83.3 91.0 0.896 0.907 0.908
20 84.2 82.5 88.9 0.903 0.911 0.918
22 83.0 83.2 86.9 0.898 0.909 0.911
24 81.0 81.0 87.3 0.893 0.903 0.904
26 77.9 80.2 84.0 0.879 0.898 0.899
28 78.3 80.7 84.1 0.878 0.900 0.892
30 78.0 80.5 83.0 0.877 0.896 0.885Table 4

kMeans based clustering performance on TDT2 data set.

Number of
clusters

Purity (100%) NMI

kMeans Kernel
kMeans

ELM
kMeans

kMeans Kernel
kMeans

ELM
kMeans

10 89.0 70.4 93.3 0.916 0.838 0.935
15 85.8 70.6 87.7 0.920 0.857 0.923
20 85.0 72.1 85.1 0.922 0.877 0.923
22 81.8 69.0 83.1 0.910 0.863 0.916
24 83.8 69.9 83.2 0.915 0.868 0.914
26 82.4 69.1 82.9 0.915 0.870 0.916
28 82.7 68.8 83.0 0.913 0.861 0.914
30 82.2 73.6 82.4 0.907 0.877 0.911

Q. He et al. / Neurocomputing 128 (2014) 88–95 93

different values are used, they are {10,20,…,80,90,100,200,300,
…,1900,2000}. For the Synthetic Control and Libras Movement
data set, all the data are used to test the performance. As for
the TDT2 data set, we choose the first 10 categories including 1000
documents. In the kernel based clustering algorithms, for the
parameter s, we choose 19 different values to test the perfor-
mance, they are f2�10;2�9;2�8;…;27;28g. As the algorithm is
stochastic, we run every algorithm 20 times and get the mean
result.

The results of ELM kMeans algorithm under different number
of nodes are shown in Fig. 2(a), it can be seen that, on all the three
data sets, the performance of ELM kMeans algorithm is very stable
as long as the number of hidden-layer nodes is large enough,
that is, larger than 300. The results of kernel kMeans clustering
algorithm with different s values are shown in Fig. 2(b). For s41,
the performance is relatively stable, but s cannot be extremely
large, as the performance will deteriorate if it is too large. The
results of ELM NMF algorithm under different number of nodes are
shown in Fig. 2(c). Similarly, on all the three data sets, the
performance of ELM NMF algorithm is very stable as long as the
number of hidden-layer nodes is large enough, that is, larger than
300. The results of kernel NMF clustering algorithm with different
s values are shown in Fig. 2(d). It can be seen that its performance
is very sensitive to the s values, and different data sets require
different s to get good performance.

5. Conclusions

Inspired by the good results of clustering in Mercer kernel
based feature space, this paper studies the clustering problem in
ELM feature space. Two algorithms are presented, one is the ELM
kMeans algorithm and the other is ELM NMF clustering, and both
algorithms get better results compared to the Mercer kernel based

methods on three benchmark data sets. Besides the good perfor-
mance of ELM based algorithms, they are also very convenient for
implementation and computation, which only require adding a
ELM feature mapping process that is simpler than the kernel based
feature mapping. Furthermore, seen from the three data sets used
in this paper, ELM based methods require less human intervention
as the algorithms performance is not sensitive to the number
of hidden layer nodes, provided that a large enough number is
selected (larger than 300 for the data in this paper). In this paper,
two types of clustering algorithms using ELM feature mapping
techniques are proposed, some other types of clustering may also
be able to benefit from the ELM feature mapping techniques,
which will be studied in the future.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China (Nos. 61175052, 60975039, 61203297, 60933004,
61035003), National High-tech R&D Program of China (863 Pro-
gram) (Nos. 2012AA011003, 2013AA01A606, 2014AA012205) and
National Program on Key Basic Research Project (973 Program)
(No. 2013CB329502).

References

[1] R. Sibson, Slink: an optimally efficient algorithm for the single-link cluster
method, Comput. J. 16 (1) (1973) 30–34.

[2] D. Defays, An efficient algorithm for a complete link method, Comput. J. 20 (4)
(1977) 364–366.

[3] S. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (2)
(1982) 129–137.

[4] T. Moon, The expectation-maximization algorithm, IEEE Signal Process. Mag.
13 (6) (1996) 47–60.

[5] M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering
clusters in large spatial databases with noise, in: Proceedings of the 2nd

Fig. 2. Clustering performance under different parameters. (a) ELM kMeans algorithm. (b) Kernel kMeans algorithm. (c) ELM NMF clustering algorithm. (d) Kernel NMF
clustering algorithm.

Q. He et al. / Neurocomputing 128 (2014) 88–9594

http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref1
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref1
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref2
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref2
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref3
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref3
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref4
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref4
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0005
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0005

International Conference on Knowledge Discovery and Data Mining, vol. 1996,
AAAI Press, 1996, pp. 226–231.

[6] S. Roy, D. Bhattacharyya, An approach to find embedded clusters using density
based techniques, in: Distributed Computing and Internet Technology, 2005,
pp. 523–535.

[7] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, R. Harshman, Indexing by
latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (6) (1990) 391–407.

[8] U. Von Luxburg, A tutorial on spectral clustering, Stat. Comput. 17 (4) (2007)
395–416.

[9] W. Xu, X. Liu, Y. Gong, Document clustering based on non-negative matrix
factorization, in: Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM,
2003, pp. 267–273.

[10] L. Zhang, W.-D. Zhou, L.-C. Jiao, Kernel clustering algorithm, Jisuanji Xuebao/
Chin. J. Comput. 25 (6) (2002) 587–590.

[11] M. Girolami, Mercer kernel-based clustering in feature space, IEEE Trans.
Neural Networks 13 (3) (2002) 780–784.

[12] F. Camastra, A. Verri, A novel kernel method for clustering, IEEE Trans. Pattern
Anal. Mach. Intell. 27 (5) (2005) 801–805.

[13] G.-B. Huang, L. Chen, Convex incremental extreme learning machine, Neuro-
computing 70 (2007) 3056–3062.

[14] G.-B. Huang, L. Chen, Enhanced random search based incremental extreme
learning machine, Neurocomputing 71 (2008) 3460–3468.

[15] Q. Liu, Q. He, Z. Shi, Extreme support vector machine classifier, in: T. Washio,
E. Suzuki, K. Ting, A. Inokuchi (Eds.), Advances in Knowledge Discovery and
Data Mining, Lecture Notes in Computer Science, vol. 5012, Springer, Berlin,
Heidelberg, 2008, pp. 222–233.

[16] B. Frénay, M. Verleysen, Parameter-insensitive kernel in extreme learning for
non-linear support vector regression, Neurocomputing 74 (16) (2011)
2526–2531.

[17] G. Huang, X. Ding, H. Zhou, Optimization method based extreme learning
machine for classification, Neurocomputing 74 (1) (2010) 155–163.

[18] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning
scheme of feedforward neural networks, in: Proceedings of International Joint
Conference on Neural Networks (IJCNN2004), vol. 2, Budapest, Hungary,
25–29 July 2004, pp. 985–990.

[19] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (2006) 489–501.

[20] D. Rumelhart, G. Hintont, R. Williams, Learning representations by back-
propagating errors, Nature 323 (6088) (1986) 533–536.

[21] G.-B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for
regression and multiclass classification, IEEE Trans. Syst. Man Cybern. Part B:
Cybern. 42 (April) (2012) 513–529.

[22] G.-B. Huang, D. Wang, Y. Lan, Extreme learning machines: a survey, Int.
J. Mach. Learn. Cybern. 2 (2011) 107–122.

[23] G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental
constructive feedforward networks with random hidden nodes, IEEE Trans.
Neural Networks 17 (4) (2006) 879–892.

[24] G.-B. Huang, Q.-Y. Zhu, K.Z. Mao, C.-K. Siew, P. Saratchandran, N. Sundararajan,
Can threshold networks be trained directly? IEEE Trans. Circuits Syst. II 53 (3)
(2006) 187–191.

[25] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and accurate
online sequential learning algorithm for feedforward networks, IEEE Trans.
Neural Networks 17 (November) (2006) 1411–1423.

[26] H.-J. Rong, G.-B. Huang, N. Sundararajan, P. Saratchandran, Online sequential
fuzzy extreme learning machine for function approximation and classification
problems, IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39 (4) (2009) 1067–1072.

[27] D. Zhang, W. Liu, An efficient nonnegative matrix factorization approach in
flexible kernel space, in: Twenty-First International Joint Conference on
Artificial Intelligence, 2009.

[28] D. Lee, H. Seung, et al., Learning the parts of objects by non-negative matrix
factorization, Nature 401 (6755) (1999) 788–791.

[29] M. Berry, M. Browne, et al., Algorithms and applications for approximate
nonnegative matrix factorization, Comput. Stat. Data Anal. 52 (1) (2007)
155–173.

[30] I. Buciu, N. Nikolaidis, I. Pitas, Nonnegative matrix factorization in polynomial
feature space, IEEE Trans. Neural Networks 19 (6) (2008) 1090–1100.

[31] A. Asuncion, D. Newman, UCI Machine Learning Repository, Available at:
〈http://archive.ics.uci.edu/ml/〉, 2007.

[32] Q.-Y. Zhu, G.-B. Huang, Matlab Codes of ELM Algorithm, Available at: 〈http://
www.ntu.edu.sg/home/egbhuang/ELM_Codes.htm〉, 2012.

[33] C. Cieri, S. Strassel, D. Graff, N. Martey, K. Rennert, M. Liberman, Corpora for
topic detection and tracking, in: Topic Detection and Tracking, Kluwer
Academic Publishers, Norwell, MA, USA, 2002, pp. 33–66.

[34] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemometrics
Intell. Lab. Syst. 2 (1) (1987) 37–52.

[35] H. Xiong, J. Wu, J. Chen, K-means clustering versus validation measures: a
data-distribution perspective, IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39
(April) (2009) 318–331.

[36] D. Seung, L. Lee, Algorithms for non-negative matrix factorization, Adv. Neural
Inf. Process. Syst. 13 (2001) 556–562.

Qing He is a Professor at the Institute of Computing
Technology, Chinese Academy of Sciences (CAS), and he
is a Professor of Graduate University of Chinese Acad-
emy of Sciences (GUCAS). He received the B.S. degree
from Hebei Normal University, Shijiazhuang, PR China,
in 1985, and the M.S. degree from Zhengzhou Univer-
sity, Zhengzhou, PR China, in 1987, both in Mathe-
matics. He received the Ph.D. degree in 2000 from
Beijing Normal University in Fuzzy Mathematics and
Artificial Intelligence, Beijing, PR China. From 1987 to
1997, he has been with Hebei University of Science and
Technology. He is currently a doctoral tutor at the
Institute of Computing Technology, CAS. His research
interests include data mining, machine learning, cloud
computing and big data.

Xin Jin is a Ph.D. candidate student in the Institute of
Computing Technology, Chinese Academy of Sciences.
He received the B.Eng degree and M.Eng degree in
Computer Science from Shandong University of Science
and Technology, Qingdao, China, in 2008 and 2011,
respectively. His research interests include machine
learning, data mining, distributed classification and
clustering. He has been awarded in several scholarly
contests, such as Mathematical Contest in Modeling of
America, National Graduate's Mathematical Modeling
Contest of China. Also, he has published several papers
in relevant forums, such as Applied Mathematics and
Computation.

Changying Du is a Ph.D. student in the Institute of
Computing Technology, Chinese Academy of Sciences.
He received the B.S. degree from the Department
of Mathematics, Central South University, Changsha,
China, in 2008. His research interests include machine
learning, data mining, matrix factorization, nonpara-
metric Bayesian statistics, multi-task and transfer
learning, parallel and distributed algorithms, natural
language processing and information retrieval. He has
published several papers in relevant forums, such as
Neurocomputing and IEEE ICDM.

Fuzhen Zhuang is an Assistant Professor in the Insti-
tute of Computing Technology, Chinese Academy of
Sciences. His research interests include transfer learn-
ing, machine learning, data mining, distributed classi-
fication and clustering, natural language processing. He
has published several papers in some prestigious refer-
eed journals and conference proceedings, such as IEEE
Transactions on Knowledge and Data Engineering,
Information Sciences, Neurocomputing, ACM CIKM,
ACM WSDM, IEEE ICDM, SIAM SDM.

Zhongzhi Shi is a Professor in the Institute of Computing
Technology, CAS, leading the Research Group of Intelli-
gent Science. His research interests include intelligence
science, multi-agent systems, semantic web, machine
learning and neural computing. He has won a 2nd-
Grade National Award at Science and Technology Pro-
gress of China in 2002, two 2nd-Grade Awards at Science
and Technology Progress of the Chinese Academy of
Sciences in 1998 and 2001, respectively. He is a senior
member of IEEE, member of AAAI and ACM, Chair for the
WG 12.2 of IFIP. He serves as the Vice President for
Chinese Association of Artificial Intelligence.

Q. He et al. / Neurocomputing 128 (2014) 88–95 95

http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0005
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0005
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0010
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0010
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0010
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref7
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref7
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref8
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref8
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0015
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0015
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0015
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0015
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref10
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref10
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref11
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref11
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref12
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref12
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref13
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref13
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref14
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref14
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref15
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref15
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref15
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref15
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref16
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref16
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref16
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref17
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref17
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0020
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0020
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0020
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0020
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref19
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref19
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref20
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref20
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref21
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref21
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref21
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref22
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref22
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref23
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref23
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref23
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref24
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref24
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref24
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref25
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref25
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref25
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref26
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref26
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref26
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0025
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0025
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0025
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref28
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref28
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref29
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref29
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref29
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref30
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref30
http://refhub.elsevier.com/S0925-2312(13)01000-X/othref0030
http://archive.ics.uci.edu/ml/
http://www.ntu.edu.sg/home/egbhuang/ELM_Codes.htm
http://www.ntu.edu.sg/home/egbhuang/ELM_Codes.htm
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref33
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref33
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref33
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref34
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref34
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref35
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref35
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref35
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref36
http://refhub.elsevier.com/S0925-2312(13)01000-X/sbref36

	Clustering in extreme learning machine feature space
	Introduction
	Preliminary knowledge
	Clustering in ELM feature space
	ELM feature mapping process
	The rationality of ELM feature mapping
	Clustering using ELM feature mapping techniques
	kMeans algorithm in ELM feature space
	Clustering based on NMF in ELM feature space

	Experiments and results
	Data sets
	Evaluation of clustering
	Compared algorithms
	Quality of the clustering results
	Parameter selection

	Conclusions
	Acknowledgments
	References

