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ABSTRACT

Claims over the numerical relationships among some measures are
commonly expressed in tabular forms, and widely exist in the pub-
lished documents on the Web. This paper introduces the problem
of numerical formula recognition from tables, namely recognizing
all numerical formulas inside a given table. It can well support
many interesting downstream applications, such as numerical error
correction in tables, formula recommendation in tables. Here, we
emphasize that table is a kind of language that adopts a different
linguistic paradigm from natural language. It uses visual grammar
like visual layout and visual settings (e.g., indentation, font style) to
express the grammatical relationships among the table cells. Un-
derstanding tables and recognizing formulas require decoding the
visual grammar while simultaneously understanding the textual
information. Another challenge is that formulas are complicated in
terms of diverse math functions and variable-length of arguments.
To address these challenges, we convert this task into a uniform
framework, extracting relations of table cell pairs in a table. A
two-channel neural network model TAFoRr is proposed to embed
both the textual and visual features for a table cell. Our framework
achieves the formula-level F1-score = 0.90 on a real-world dataset
of 190,179 tables while a retrieval-based method achieves F1-score
= 0.72. We also perform extensive experiments to demonstrate the
effectiveness of each component in our model, and conduct a case
study to discuss the limits of the proposed model. With our pub-
lished data this study also aims to attract the community’s interest
in deep semantic understanding over tables.
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1 INTRODUCTION

Claims over the numerical relationships among some objective
measures widely exist in the published documents on the Web.
These numerical relationships are expressed not only in verbal
descriptions, but also more frequently in tabular forms. For example,
various financial documents (e.g. IPO prospectus, bond prospectus,
corporate annual report etc.) contain some verbal descriptions over
the finance indicators of the corporates. Such verbal descriptions
often appear in sentences around tables and describe only a small
portion of the data presented in tables. That is to say, formulas are
more common in tables.

Figure 1 gives two typical tables with their expressed formulas.
One is from a company’s annual report, while the other is from the
U.S. demographics. For the first table, with the basic understanding
of tabular forms and some common sense about geography humans
can easily recognize its corresponding formulas. For example, the
second formula on its right is B8=B4+B7, expressing that the total
number of shareholders in 2019 equals to the sum of those in Asia
and Australia. For the second table, the first formula on its right
is D8=(B3-C3)/C3, expressing that the change rate of the total U.S.
Census population from 2010 to 2020 equals to the value inside
D8. Since formulas are quite common in tables, in this study we
introduce the problem of numerical formula recognition from tables,
namely recognizing all numerical formulas (e.g., the right side in
Figure 1) inside a given table (e.g., the left side in Figure 1). To
the best of our knowledge, although there are extensive studies
dedicated to table understanding [35], this is the first attempt that
tackles this problem.

This task opens a wide perspective of interesting downstream
applications. A straightforward but meaningful application is error
correction in tables. Even in published financial documents, which
have been reviewed many times, numerical errors caused by formu-
las are still inevitable. In 2012, since the formulas within the copied
cells were not adjusted accordingly, JP Morgan severely underesti-
mated the downside of its synthetic credit portfolio, which led to
the bank suffering approximately $6.5 billion in losses and fines!.
Furthermore, such errors may cause greater disasters in govern-
ment and academia. In 2013, academic critics had found 3 major
errors in the paper "Growth in a Time of Debt" that had been pub-
lished in 2010 and led to unjustified adoption of austerity policies
for countries with various levels of public debt. One of these errors

!https://www.bloomberg.com/news/articles/2013-09-19/jpmorgan-chase-agrees-to-
pay-920-million-for-london-whale-loss
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Formulas:

A B C D B4=B5+B6
1 2019 2018 88=B4+87
, Numberof ~Changes from the Number of D4=D5+D6
Shareholders ~ Previous Year (%)  Shareholders D8=D4+D7
L2 | Address C4=(B4-D4)/D4
lasia 00 [ e e —
51 China C5=(B5-D5)/DS
[6] India C6=(B6-D6)/D6
B )
| 7 | Australia C7=(87-D7)/D7
o | Total | s e e
— C8=(88-D8)/D8
Formulas:
D3=(B:
A 8 [ c D E
(] Census population Change, 2010-2020 £3=B3-C3
2 JEuSI;I:mZ‘((]}SO April 1,2010 Absolute D4=(B4-C4)/C4
. E4=B4-C4
3 [TotalUs. [ 7~ I I I o [ m—
[ | california Cr - D5=(B5-C5)/C5
5 [Texas - e e o -

Figure 1: Two example tables with their recognized formulas.
The indexes of rows and columns in gray boxes are added to
identify different cells. Best viewed in color.

is that an average formula excluded five countries from the list in a
table?. As we can see, these errors may cause severe consequences,
thus they should be thoroughly removed before official publishing.
An automatic solution for this cross-check is to first recognize each
formula from a table, and then bring the involved values into the
formula to verify whether the left and right sides of the formula
are equal or not.

Another interesting application is formula recommendation in
tables. In the process of table editing, after users have filled in the
table headers and the overall table layout is developed, we can
automatically suggest the formulas among the table cells in real-
time. These recommended formulas can guide the user on how the
remaining empty cells can be filled, prevent users from making
mistakes due to negligence, and improve the effectiveness and
efficiency for the table editing process.

There are also extensive studies [21, 26] to show that values in
tables are error-prone and at least one error caused by a formula
was found in more than 95% of spreadsheets [25]. Thus, all the
values and formulas (if some existing) are not reliable to our task.
It drives us to only leverage the text and visual appearance of table
headers and table layout structure, which are more reliable features
for this task. With these reliable features our solution can eliminate
the impact of value and formula errors and support a wider range
of applications. To emphasize this, all the numerical values in the
example tables used in this paper are replaced with asterisks.

In this study, we also emphasize that table is a kind of language
that adopts a different linguistic paradigm from natural language.
In a sentence, content words (e.g., nouns, most verbs) contribute to
the meaning of the sentence and functional words (e.g., preposition,
pronouns) express grammatical relationships among content words.
Analogously, the words in table cells contribute to the meaning,
while visual layout (namely table structure) and visual settings (e.g.,
indentation, font style, row height, column width, even the visibility
of table lines) express the grammatical relationships among the
table cells. Take Figure 2 as an example, for the value in the blue
box inside the table, its meaning is determined by words: “2019",

Zhttps://en.wikipedia.org/wiki/Growth_in_a_Time_of Debt

B8 = B4 + B7 2019 2019 Asia Revenue

N Changesirom ine
2 \Revenueprevi S Year (%) Revefllie

Total

B4 B7
In 2019, revenue in Asia and Australia were|21,614 and|2.341], respectively,

revenue in China and India\were 16,883 and 4,731, respectively, for the
total company revenue of|23,955 |.
B8

Figure 2: Table is a two dimensional language. Best viewed
in color.

“Revenue’, and “Asia". The same meaning can also be expressed
in natural language with similar words, where these words are
connected by functional words like “in”, “were”, shown in red in
Figure 2. However, in tables they are connected by visual layout (e.g.,
in the same row, column). Moreover, tables have hierarchy among
headers, like the syntactic tree of a sentence. It is usually used to
express relations like part of the whole. For example, we can infer
B8=B4+B7 from the table in Figure 2. However, B8=B4+B5+B6+B7
does not hold since the table expresses that “China" and “India"
with the visual setting of indentation belong to “Asia” without the
indentation. Therefore, Understanding a table and recognizing its
formulas is similar to natural language understanding tasks, but
imposes more challenges to crack its visual grammar [20].

Text understanding is already a challenging task, but table un-
derstanding requires taking visual information into consideration.
This poses the first challenge to recognize formulas in tables.

Another challenge is the complexity of formulas. There are many
kinds of math functions, like Subtraction, Division, Sum, Average.
For functions like Sum and Average, the number of arguments is
variable. Moreover, the candidate space is huge (any table cell can
be any argument in a formula). In Section 2, we describe these
challenges in detail and present some observations on how the text
and visual settings affect the table meaning.

To address these challenges, we convert this task into a uni-
form framework, extracting relations of table cell pairs in a table.
The overall process has two steps: 1) result cell detection: classify
whether a cell is a result cell (the left side of a formula); 2) cell pair
classification: for each result cell extract its arguments in the right
side of a formula. Specifically, a two-channel neural network model
is proposed to embed both the textual and visual features for a
table cell. It is elaborately designed so that the implicit and explicit
header hierarchy can be considered. This multi-modality embed-
ding is detailed in Section 3.3. Extensive experiments show that our
method outperforms the baseline methods by significant margins
from F1 = 0.72 to 0.90 on a real-world dataset of 190,179 tables with
their labeled formulas. Ablation studies demonstrate the effective-
ness of each component in our model, and most importantly that
visual features can improve the performance of formula recognition
significantly. Furthermore, we provide some case studies to demon-
strate the generalization ability and limits of our model. We hope
our study can push forward the research on in-depth understanding
of table semantics.
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Figure 3: A matrix table [22] with its table areas and table
header hierarchy. Best viewed in color.

2 FORMULAS IN TABLES

In this section, we describe the complexity of tables and formulas
and illustrate the challenges of recognizing formulas in detail by
exemplifying some formulas in tables.

2.1 Preliminaries on Tables

Following Eberius et al. [8], tables can be classified into three cate-
gories: Relational, Entity, and Matrix. A relational table is similar
to a table in the relational database. It describes a series of similar
entities with the same attributes. The name of attributes is usually
placed at the beginning of each column which is also called the
column header. An entity table describes the information of only
one entity and each row is an attribute-value pair. An example
is the info-box in Wikipedia. Each row header in an entity table
corresponds to an attribute. The name of attributes is usually placed
at the beginning of each row which is also called the row header. A
Matrix table has both row headers and column headers. It is often
used in vertical domains to represent data in a more compact and
concise form for human reading. Since formulas appear much more
frequently in matrix tables than the other two table types, we pay
more attention on matrix tables in this study.

In contrast with the first two table types, a value in matrix tables
depends on two or more attributes. The interweaving of rows and
columns makes matrix tables usually appear as a two-dimensional
structure. Figure 3(a) is a matrix table with its three areas from [22],
i.e., row headers, column headers, and data cells. We refer to the
intersection of each row and column as a grid cell and multiple grid
cells can form a merged cell. For example, in Figure 3(a) the two
grid cells of B2 and C2 are merged into a new cell.

Headers with hierarchy is the most salient feature of matrix ta-
bles. Normal headers can only represent the value in a data cell that
depends on one or two attributes (i.e., its row header and column
header). If some values depend on more than two attributes, head-
ers will be grouped, divided, and rearranged so that they produce

explicit or implicit hierarchy to represent richer content. Namely, a
header hierarchy is usually in the form of a tree structure of headers.
It endows tables, a two-dimensional structure, with the ability to
express multi-dimensional semantics.

As shown in Figure 3(b), there are two kinds of header hier-
archy: explicit and implicit. The explicit hierarchy is represented
by merged cells and visual patterns in column headers. The im-
plicit hierarchy usually exists in row headers, and is implied by
the combination of text semantics and visual patterns. Based on
the internal table structure with the information on merged cells,
the explicit hierarchy is easy to be recognized while detecting the
implicit hierarchy is difficult.

Such structures of hierarchical headers are frequently used to
reduce redundant expressions inside a table for human reading but
poses a challenge for machine understanding [22]. To understand
the complete meaning of a data cell, it is necessary to combine
the semantics of all its ancestor nodes in the tree of hierarchy.
Furthermore, the representation of formulas, especially summation
formulas, is closely related to the implicit header hierarchy.

2.2 Challenges of Formula Recognition

The challenges of formulas recognition come from two aspects:
table representation complexity and formula complexity.

2.2.1 Table Representation Complexity.
Diverse representation of tables is the major challenge for recog-
nizing formulas. The semantics of a formula is entailed in the table
headers with hierarchy. To clearly illustrate this challenge, we ex-
emplify a bunch of formulas in the three tables in Figure 4. With
these examples we have the following observations.
Observation 1. Textual information on the header hierarchy is
the key to understanding the meaning of tables. Here, the textual
information in table headers is closely related to both common sense
and domain knowledge. First, the rich common sense and worldly
facts entailed in the text are essential for table understanding [32].
For example, there are some formulas in Figure 4(a):

B8 = B4+B5+B6+B7, 1)
C4 = B4/Bl0. ()

Our common sense tells us that the row headers in cells of A4
through A7 refer to some countries, belonging to cell A8 "Asia".
Thus, Formula (1) exists in the table. Also, another common sense
of text "%" in cell C2 indicates that there may be division formulas
in the column C, e.g. Formula (2). Second, the text in tables usually
contains domain knowledge to provide clues for formulas. For
example, to recognize the formula

B11 = B7+B10, (3)
it is necessary to know the specific finance knowledge such as what
"profit before taxation" and "net finance costs" are. Without a finan-
cial background, we are unable to understand the table in Figure 4(c),
let alone identify the formula. Moreover, domain knowledge is used
extensively in the tables from vertical domains.

Observation 2. The visual appearances serve as auxiliary infor-
mation for representing formulas. There are diverse visual objects
inside tables. For example, in Figure 4(c), bold text in cell A18 and
indentation in cells A19 and A20 give a strong signal that they have
a hierarchical structure and there are two summation formulas

Figure 4(a):

Figure 4(c):
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Figure 4: Example of formulas in three tables. The cells in green are used as examples to show their formulas, and the red
numbers indicate their reference indexes to the corresponding formulas. Best viewed in color.

(4) and (5). In Figure 4(a), even though the cell A10 is empty, the
visibility of the upper table line implies the existence of Formula (6).
Figure 4(c): B18 = B19+B29, 4)
C18 = C19+C20, (5)
B10 = B8+BY. (6)
However, visual patterns are not always reliable as their usage is
quite flexible and has no standard rules. Sometimes the text is bold
just for content emphasis (e.g., cell A10 in Figure 4(b)). Also, the
indentation of headers can only imply that there may be a formula
here, but the complete content of the formula is unknown. For
example in Figure 4(b), even though there is indentation in cell A4,
A5, we still have to consider the textual semantics of cell A3 and A6
to get the formula
Figure 4(b):
instead of B3 = B4+B5.
Observation 3. Horizontal formulas are common in tables. Al-
though the cases mentioned before involve the cells in different
rows, there are also some formulas where the cells are in the same
row, which is called horizontal formulas. For example,
Figure 4(a): D4 = (B4-E4)/E4, (8)
Figure 4(b):  E3 = B3+C3+D3, ()
are both horizontal formulas.
Observation 4. Multiple formulas might appear in the same table
cell. Because the financial indicators displayed in the same table

have strong correlation, some indicators can be obtained through
different calculations over different sets of table cells. For example,

Figure 4(a):  C8 = CA4+C5+C6+C7, (10)
c8 = B8/B10. (11)
Both of the above two formulas are located in cell C8.

Figure 4(a):

B6 = B4+B5, ()

2.2.2 Formula Complexity.
With all the examples of formulas in Section 2.2.1, here we give the
formal definition of formula as follows.

Definition 2.1 (Formula). A formula can be defined as:

r=flen- e en), (12)
where r is the result symbol; f € 7 is the function type of the for-
mula, ¥ is a predefined function type set; e; is the i-th argument of
the formula, n is the number of arguments. For example, a division
formula r = e1 /e contains two arguments. It can also be expressed
asr = fy(e1, e2), where f; refers to the division function.

Namely, a formula refers to an expression with an equal sign,
the left-hand side, and the right-hand side. The left-hand side of
a formula corresponds to the result table cell where this formula
is located. The right-hand side of a formula shows the concrete
expression to calculate the result. In our task, the result symbol and
arguments in the function might refer to a cell in the table.

Clearly, formulas are complicated in terms of diverse math func-
tions, and even for the same function like SUM the number of argu-
ments can not be fixed in advance. Also, we need to consider the
order of the arguments for some functions such as division, while
this is not always necessary for some other functions such as SUM,
AVG, MIN, and MAX, where the commutative property holds. There-
fore, we need a concise, effective, and machine-friendly framework
to express all kinds of formulas.

3 SOLUTION

To address the challenges introduced in Section 2, we propose
our solution here. The formula recognition task converted into a
relation extraction task between two cells, by first detect result
cells and then classify cell pairs. To do the classification, a table cell
encoding model TAFor is proposed which considers both textual
and visual information.

3.1 Problem Conversion

Instead of directly decoding the whole formula as a sequence, we
convert a formula into several relations between result and element
cells (we call them triplets) in the training phase and extract these
relations to compose a formula in the inference phase.



Table 1: Examples of formulas with their triplets.

Name ‘ In Definition 2.1 ‘ Computation Rule ‘ Triplets

‘ Label Group

Division (d) r = fa(e, e) r=e/e
Growth Rate (gr) r= fgr(e1, e2) r=(e1—e)/e
Average (avg) r= favg (- )

Addition and subtraction (+) | r = fi(---)

r=(ei+---+ep)/n

r=e —ey- -

(r, f],e1), (r, f2, €2) L(d)={rone, f}. {7}

(r [, e1), (1, £919, €2) L(gr)={none, {1, fo'd}
(r>faug> e1), -, (r favg’ en) L(avg)={none,ﬁwg}
(r.fi e, (r. fo,e2), - L(x)={none, f, fi'}

Definition 3.1 (Triplet). A triplet consists of three parts: result
cell r, relation type f*, and element cell e:

(r.fle) )

indicating that there is a relationship f* between cells r and e.

Clearly, each formula r = f(ey,--- ,ej,- -+, ep) in Definition 2.1
can be represented as a set of triplets as follows:
{(nfle), - (nfle), - (r fMen))s @)

where the triplet (r, f%, e;) means that e; is the i-th argument in the
formula with the result cell r and function f. So, a formula with n-
argument function f is transformed into n triplets. In practice, if the
commutative property holds for some functions (e.g. Average), we
do not need to distinguish the position of different arguments. For
example, 7 = fayg(e1, e2) is converted to {(7, favg: €1), (7, favg: €2)},
where there is only one relation type fyy as we do not have to
specify the position of arguments e; and ez. Another example is that
r = e1 + ez — es is converted to {(r, i, e1), (r, fif, e2), (r, fi . €3)},
where we only have to specify the operator f;f or f, and ignore the
position of arguments in the formula. We refer to such functions
as unordered functions. Table 1 gives some example functions with
their corresponding triplets.

In the training phase, we train our model based on the union
set of triplets converted from all of the annotated formulas. In the
inference phase, we perform our conversion method in an inverse
manner to convert the predicted triplets to predicted formulas. In
detail, we group the predicted triplet set by the result cell r and
the function type f of the triplet. Each group can form a candidate
formula. In general, if there are more than two triplets in a group
with the same relationship f*, we keep the one with the highest
confidence (not adopted in unordered functions). For instance, if
there are two formulas

a = Average(b, c,d), b = Division(c, d).
In the training phase, they are divided into five triplets:

{(a, favg: b). (4 favg: ©), (@ favg, d), (b, f}, ). (b, f7.d)}
In the inference phase, if our model predicts perfectly these five
triplets, we can aggregate them according to their result cell and
function type into two groups:

{(a, favg: b). (@, favg: ©), (@ favg, )}, A(b, f, ), (b, f7.d)}.
Then, we can easily obtain the two original formulas. As we need
adequate samples to train and evaluate our model, we only consider
the functions that appear in more or nearly 1% of the tables for the
experiments (detailed in Table 6). Therefore, in this study, we only
consider the four types of formulas shown in Table 1.

3.2 Solution Framework

This section describes the overall framework of our solution. Di-
rectly generating all candidate cell pairs in an n by n table will

produce O(n?) pairs. To reduce the number of candidates, we trans-
form the whole task into the following two sequential sub-tasks:

1) Result Cell Detection. For each table cell this task detects
whether it is the left-hand side (result) of a formula. It is formulated
as a binary classification task for table cells. For example, the table
cells in green in Figure 4 are positive samples for this task.

2) Cell Pair Classification. For each positive result cell detected
by the first step, the second step extracts its relationships with other
cells. It is formulated as a classification problem for cell pairs. For
each cell pair (r, e), we do multi-label classification to select one
label from each label group in Table 1. So, we can predict multiple
formulas with different function types in a single cell.

By decomposition, the number of candidate pairs reduces to
O(Fn?) where F is the number of result cells. We introduce how to
do the classification in the next section.

3.3 Two-channel Model

To do cell classification and cell pair classification, we propose a two-
channel model to encode the visual and textual information of each
data cell. A data cell is represented by its column and row headers,
since the semantics of a data cell does not lie in its value but mostly
in the headers. Due to the hierarchy within table headers, especially
the implicit hierarchy, we also encode the context information into
each column and row header. So, a data cell looks not only at the
headers in the same column and row, but the whole header region.

The architecture is shown in Figure 5. First, we encode each
header. For arow header cell r;, its text information is encoded into a
vector ¢, its visual information is encoded into Ul.r , and we represent
it as h; = [tir; vir]. Then, we connect all row headers by a LSTM.
Similar for column headers. Finally, a data cell c; ; is represented
as [hlf R h;]. Note that the table structure, row headers, and column
headers have been recognized as the input to this framework. Next,
we introduce how to encode the textual information and the visual
information, and how to combine them.

3.3.1 Text Module.

The text module is illustrated in Figure 5(a). We use row headers
to illustrate the text module. The computation for column headers
are similar.

The explicit hierarchy like merged cells (Figure 3(b)) is the input
to our model. To explicitly capture this information, for each leaf
node of the hierarchy, we extend its text by concatenating the text
of its ancestor nodes with a special token "&" from root to leaf.
For example, in Figure 3(b), the extended sequence of the second
column is "Attributable to BHP shareholder & share capital & BHP
Billiton Limited", the extended sequence of the third column is
"Attributable to BHP shareholder & share capital & BHP Billiton
Plc". Then, the sequence of each row are fed into an embedding
layer and a Bi-LSTM network to output a hidden vector to represent
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Figure 5: Model architecture. Orange indicates a row header and blue indicates a column header. Best viewed in color.

the textual information of that row:

tl-r = Bi-LSTM(Embedding(w; 1, wi 2, ...)), 3)
where t] is the textual hidden vector of the i-th row, (w;,1, wi2)
is the word sequence of the i-th row, Bi-LSTM(-) returns a single
vector to represent the sequence. Similarly, the textual information
of the j-th column is encoded in t]c..

3.3.2 Vision Module.

The vision module is illustrated in Figure 5(b). While the row header
area contains rich visual information that implies the hierarchy of a
table, using visual patterns to imply hierarchy appears rarely in the
column headers. Therefore, we only consider the visual appearances
of the row header area in this module. The vision module has two
phases: Pixel Phase and Cell Phase.

Pixel Phase. In this phase, an image I is generated based on the
row header area of the input table T. The size of the image I is equal
to the original size of the table row header area in documents. The
image contains 4 binary channels. For the first channel, a pixel has a
value of 1 if it is covered by a table line or any word box, otherwise
is 0. The other three channels encode the bold, italic, and light
font style, where a pixel has a value of 1 if it is covered by a word
with the corresponding font style. Here, the first channel reflects
implicitly the table layout, indentation, and other potential visual

settings. The other three channels about font style are auxiliary.

We scale the longer side of the input image to 256 while keeping its
aspect ratio. Then a multi-layer CNN encoder for pixels (CNNp) is

used for capturing the visual feature of each pixel with its context.

It is an encoder-decoder neural network that produce EP with the
same width and height as the input tensor.

Cell Phase. Then, we get the hidden vector e? of grid cell i
by aggregating vectors of pixels in i. All the vectors of grid cells
form a tensor EY. The CNN encoder is another multi-layer CNN
to capture contextual information at the cell-level, which takes EY
as input and produces E¢ without changing the size.

In some tables, the row header area may have multiple columns
and merged cells. The representation of the i-th row is obtained by
aggregating the hidden vectors of grid cells in this row. Finally, the
visual information of the i-th row is encoded in o] .

3.3.3 Feature Combination and Cell Representation.

The header of i-th row now is represented by hi = [t];0]] (con-
catenation of textual and visual vector), combining the textual and
visual information. To further integrate these two information, and
enhance the context information, these header hidden vectors are
fed into LSTM networks. In summary,

(h1, ... hg) = LSTMg (h], h”R) (4)

Similar for column headers.
Finally, we obtain the representation of cell; j by concatenating
the hidden vectors of the headers in the same row and column:

hij = [hi; hS]. (5)

3.4 Joint Training
With the representation of each data cell, we introduce how to do
result cell detection and cell pair classification.

Result Cell Detection. In this task, the feature h; ; is fed into
two fully-connected layers with a ReLU activation in between. Fi-
nally, a softmax non-linear layer predicts the probability of whether
a cell is a result cell. The cross-entropy loss of result cell classifica-
tion L. is defined as:

Lre == yelog (p(e) + (1 -yc) log (1= p(c))  (6)

where p(c) is the predicted probability that cell ¢ is a result cell, y,
equal to 1 if cell ¢ is a result cell in ground truth.

Cell Pair Classification. For two cells in a candidate cell pair,
we concatenate the features of them and feed it into several inde-
pendent classifiers. Each classifier contains two fully-connected
layers with a ReLU activation in between, followed by a softmax
layer. The cross-entropy loss of cell pair classification is defined as:

Lep=- Z Z Z L=y, ()1 1og (px(5)) ™)

freFsePkeL(f;)
where ¥ is the predefined formula type set, P is the candidate set
of cell pairs, ys(f;) indicates the label of candidate cell pair s for
the function f;, L(-) indicates the label set of f;, py (s) indicates the
probability that candidate cell pair s belongs to the label k.
Finally, our overall optimization objective is to jointly minimize
these two losses: £ = L;c +aLcp where a is a trade-off parameter.



4 EXPERIMENTS

Two datasets are adopted in this study. DECO-F is a small dataset
with 1,264 tables we derived from DECO [19]. As this dataset is
small, we put the discussion in Appendix B.2. In this section, we
focus the result on a larger dataset FinFormulas we collected.

4.1 Dataset

We collected a dataset, namely FinFormulas, consisting of 190,179
tables from various types of 4,746 Chinese financial documents
(in PDF format). The documents in finance are table-intensive and
computation-intensive. All the documents used are the annual re-
ports and IPO prospectuses in Chinese financial markets, crawled
from CNINFO?, a website for the China Securities Regulatory Com-
mission. For each PDF file, we use PDFlux? to recognize all the
tables and their inner table structures. To annotate formulas in
tables, we recruited ten in-house annotators for this labeling task.
Each annotator has at least 3-year experience in auditing so that she
is capable to recognize all the formulas in financial tables. For each
table, the first two annotators independently annotate it. If there are
any conflicts between these two labeling results, another annotator
proof-reads and corrects the results to get the final ground truth
for each table. This rigorous process ensures the high quality of
the labeled data. We follow [3] and use micro F1-score to measure
inter-annotator agreement of our dataset. The final micro F1-score
is 94.83%, indicating there is a high degree of agreement between
the two independent labeling results.

The resultant corpus contains 190,179 tables in 4,746 financial
documents, with a total of 1,442,227 formulas. On average each doc-
ument contains 40.07 tables and each table contains 7.58 formulas.
As we mentioned in Section 3.1, we only consider four types of
formulas as we need enough samples to train the model. These four
types of formulas account for 98.22% of all formulas in the corpus.
More statistics can be found in Table 5 in Appendix A.

4.2 Experimental Setup

4.2.1 Candidate Generation. For a result cell (i, j), we only con-
sider to make candidate pair with cells in the same row or col-
umn (i,-), (-, j), or with cells in the adjacent rows or columns
(i+1,-),(j+£1). These candidates cover over 99% of annotated
formulas. Details about candidate generation and training setting
for reproducibility are discussed in Appendix A.

4.2.2  Metrics. We evaluate the performance of our framework on
the two tasks. For the cell detection task, We report the F1-score.
For the cell pair classification task, we report the F1-score on the
pair level and formula level which computed by comparing the
predicted formula set F’ and the ground truth formula set F. We
primarily report F1 on formula level unless otherwise specified.

4.2.3 Methods Compared. We compare our solution against two
retrieval-based baselines:

e Header Hard Matching (HHM). Given a test table, we extract
its header set (contains row and column headers) and find the table
in the training set with the same header set. Then the annotated

3http://www.cninfo.com.cn/
“http://pdflux.com/

Table 2: Evaluation results.

+ d gr avg | overall
HHM 42.57  46.29 4878  46.37 44.08
HSM 68.00 7897 7445 67.12 72.05
TaFor 90.15 91.66 8587 87.38 90.65
HHM + TaFor | 90.02 93.58 92.19 89.18 | 91.31

formula set of the found table is suggested as the answer for the
test table. If no table is found, the answer for the test table is empty.

e Header Soft Matching (HSM). For each table, we concatenate
the text in all headers with a special token to obtain a header
sequence according to the order of rows and columns. We define
the similarity of two tables to be the similarity between their header
sequences depended on the edit distance?, i.e.,

+ —dist ,
Similarity(Ty, T) = Is1l+ Isz istance(s1, $2)

el
where s1, 52 are the header sequences of table Ty and Ty, distance(s1, s2)
calculates the edit distance between s and sy, |-| indicates the length
of a string. Given a test table, we use their similarity to rank the
tables in the training set that have the same number of rows and
columns with the test table. The annotated formula set of the top-1
table is suggested as the answer.

Moreover, we run our solution with two setups:

o TaFor (for Table Formulas Recognition). The framework in
Section 3 with our two-channel model and two classification tasks.

e HHM+TAFoR. Given a test table, we first perform HHM for it.
If there is no table in the training set with the same table headers,
we feed it into our TAFor framework and get its predicted answer.

Finally, we conduct ablation experiments over each key compo-
nent in order to explore their relative importance.

4.3 Performance Evaluation.

4.3.1 Method Performances. Table 2 summarizes our results on
the test set compared with baselines.

For two baselines, HSM achieves higher performance with F1 =
72.05% than HHM. For HHM, there are only about 28% tables in the
test set can hit a result table in the training set. When we recalculate
the F1-score of HHM on the subset of these 28% test tables, the
overall F1-score reaches 99.3%. This result justifies the rationality
of the design of using the feature of the corresponding row and
column header to represent a data cell, since HHM only takes the
text in table headers to hit a result table.

Compared with the two baselines, our TAFoR achieves an overall
F1 =90.65% across all four formula types, which outperforms best
baseline HSM (72.05%) by a large margin. The ensemble of HHM
and TaFor further improves the performance to 91.31%.

An experiment is conducted to analyze the performance of
TaFoR on tables that are not similar to any table in training dataset
and its result is shown in Figure 6. We define the similarity of a test
table T to the training dataset T based on Equation 8 as:

similarity(T,T) = max (similarity(T,T")) 9)
S

Then, the test tables are split into 10 groups by their similarity
to the training dataset. In each group, we count the number of

5The similarity is calculated by Levenshtein.ratio in python
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Table 3: Evaluation results on different groups of tables.

# of columns
F1 (# of tables) 05 510 =T
1-10 90.99 (5476)  93.77 (1916)  79.82 (55)
2 | 11-20 86.71 (1048)  89.83 (507)  75.48 (23)
& | 21-30 91.47 (324)  83.96(169)  90.13 (10)
% | 31-50 92.85(218)  86.02(80)  68.32 (6)
* 1 51-80 89.10(52)  6542(23)  —(0)
>80 94.60 (31)  7885(17)  —(0)
Table 4: Ablation results.
Result cell | Pair Formula level
detection | level + d gr avg | overall
TaFor 96.12 95.17 | 90.15 91.66 85.87 87.38 90.65
—text 61.43 65.42 | 64.24 0 0 46.40 48.78
—vision 94.42 93.93 | 87.86 90.89 83.69 83.59 88.77

tables and test the performance of TAFor and HSM. The overall
F1-scores on formula level are shown in Figure 6. Note that the
group of similarity [0, 0.1] is not shown in the figure as there
are no tables in this group. Although the performance of TaAFor
decreases slightly as the similarity decreases, it is much better
than the baseline HSM. We can observe that even in the group of
similarity [0.2, 0.3], TAFoR achieves an overall F1-score of nearly
80% which significantly outperforms HSM (nearly 10%).

We also analyze the performance of TAFoR in terms of table size.
We split tables in the test dataset into several groups and mark the
number of tables of each group in Table 3. Along with the number
of rows and columns increases, the F1-score tends to decrease.

4.3.2  Ablation Study. We conduct ablation studies on the informa-
tion representation and location. The results are listed in Table 4.
The experiments starting with "—" indicate that we ablate some
features from TAFOR to evaluate their contributions.

e Ablation on textual information. When we ablate the text
information of inputs ("~text"), i.e., remove ¢ and ¢ from cell repre-
sentation, the overall F1-score on formula level drops dramatically
from 90.65% to 48.79%, which demonstrates the textual information
is actually the key to understanding the tables. In this experiment,
the performances of formula d and gr are even zero because their
existence strongly depends on the textual information. For example,
in Figure 4(a) d formulas from C4 to C9 and gr formulas from D4 to
D10 cannot be recognized without the text in C2 and D2.

e Ablation on visual appearances. Comparing with TAFOR,
we find that by ablating the visual feature (i.e. v]), the overall
F1-score decreases by 2% (90.65% — 88.77%), which meets our ex-
pectation that the visual appearances serve as auxiliary information
for representing formulas.

In summary, the textual information and visual appearances are
complementary to recognize formulas.

4.4 Limitations and Future Work

We analyze a bunch of failure cases to identify the limitations of our
solution, which might lead more interesting future studies. We find
that although our solution has achieved a high formula-level F1 of
90% there is still room for improvement on the model robustness
to the variations of table headers. Some cases are shown in Appen-
dix A.4. We find natural language understanding is important for
this task, for example, named entity recognition can help handle
unseen text. We also observe that the common sense and domain
knowledge are vital to fully recognize the formulas in tables. Our
model does not encode the prior knowledge. Thus, it is still hard to
transfer the model obtained in one domain to another domain, lead-
ing to other interesting future work. Hence, formula recognition
over tables also provide a good scenario to develop models which
combine deep learning and symbolic prior knowledge.

5 RELATED WORK

We summarize our related work into the following aspects.

Table Detection and Structure Recognition. Tables lose their
structure information when they are exported into PDFs. Research
on table detection and structure recognition started from the last
century. In 1993, Itonori [15] proposed a rule-based method to de-
tect table position and recover table cells. Some methods [4, 7] based
on generative or statistical machine learning methods were devel-
oped to avoid manually proposing rules. More recently, Schreiber
et al. [28] proposed a deep learning architecture for detecting table
location and identifying the row and column positions. The graph
neural network is also used in [27]. Our work is based on the result
of table detection and structure recognition.

Table Understanding. Much of the previous table-related re-
search focused on understanding tables at different levels. The tasks
of table type classification [9, 24], table cell classification [11] or
region detection in tables [9, 29] could be assumed as the prelimi-
nary tasks of table understanding. Further, [5, 6] have explored the
ways to identify the hierarchy of table headers. Recent work [14]
proposed a system BriQ linking quantity mentions in texts and ta-
bles, which dealt with the aggregation formulas in tables. However,
this method is value-dependent and performs certain calculations
among the specific numerical values. Our solution recognizes for-
mulas by understanding deeper semantics of tables entailed in the
textual information and visual appearances of table headers, which
opens a deeper perspective for the research of table understanding.

Besides, there are many interesting downstream studies based
on tables, such as relation extraction between tables [10, 31], entity
linking [2, 34], table retrieval [23, 33]. Most of these studies are
based on the Web tables with simple internal table structure. Mean-
while, the matrix tables with complex hierarchy exist widely on the



Web. We hope our study will push forward the related downstream
applications on the tables in vertical domains.

Most research on table understanding utilizes deep neural net-
works. Recent studies [11, 12] embedded a table into the vector
space to classify tables or table cells. TabNet [24] is a neural net-
work architecture for table type classification. It conducted RNN
and CNN on text to represent a table. However, the CNN in Tab-
Net only captures textual correlations between cells but omits the
visual appearance of the table. Our experiments demonstrate that
the visual and textual features are complementary to each other
and can be jointly conducted to achieve better performance.

Spreadsheet-related Tasks. Spreadsheets are common in the
enterprise. To improve the quality of spreadsheets, most studies
about spreadsheets focus on error detection [16]. Singh et al. [30]
performed a simple neural network to find errors where an author
has placed a number in a cell that should be a formula. Barowy
et al. [1] proposed ExceLint based on information-theoretic static
analysis which finds missing formulas and fixes the current for-
mulas based on the existing formulas. These studies are based on
spreadsheets where formulas are accessible. However, such existing
formulas only appear in spreadsheets and are also unreliable. Our
solution can predict new, not existing formulas based on semantic,
which can be used for formula recommendation.

6 CONCLUSION

In this study, we provide a uniform schema of formulas and convert
this task into a problem of triplet extraction. Specifically, we divide
this task into two sequential sub-tasks: result cell detection and cell
pair classification. Then, an end-to-end model TAFoRr is developed
to capture the joint correlation of textual information and visual
appearances of tables. Extensive experiments show that our TAFor
achieves an overall F1-score 0.9024 on formula level with an in-
crease of at least 0.18 F1-score compared with two retrieval-base
baselines. Ablation studies demonstrate that the textual information
is actually the key to understanding tables, and the visual features
are complementary to the textual information. They can be jointly
conducted to achieve better performance.

We need to point out that the high performance of our model
heavily relies on a large scale of annotated data with great labeling
burden. In the future, we will explore how to inject common sense
and domain knowledge to decrease the labeling costs while obtain-
ing high performances. Also, this study aims to attract the interests
of the community in deep semantic understanding for tables and
the development of related downstream applications.
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Table 6: Distribution of formula type and effectiveness of
candidate generation strategy in FinFormulas.

formula “ ‘ generation upper bound
type strategies applied of recall
+ 893k | 61.95 S1 99.98
d 483k | 33.52 S$1, 82 97.50
gr 26k 1.80 S1, 82 99.70
avg 14k 0.95 S1 99.96

other 25k 1.78 - -

A DETAILS ON FINFORMULAS
A.1 Statistic

The statistics about FinFormulas is summarized in Table 5. On av-
erage each document contains 40.07 tables and each table contains
7.58 formulas. There are 75.43% of formulas whose elements are all
in the same line (row or column), and 99.14% of formulas whose
elements are included in the same line or adjacent lines. This moti-
vates the candidate generation in Appendix A.2. The distributions
of tables about the number of rows and columns are shown in Fig-
ure 7. Most tables contain 1-20 rows and 2-10 columns. Some huge
tables have more than 80 rows, 15 columns.

Table 5: Statistic of FinFormulas and DECO-F datasets

FinFormulas | DECO-F
# of documents 4,746 1,165
# of tables 190,179 1,263
# of formuals 1,442,227 4,014
# of formulas with elements in the same line 1,087,904 3,944
# of formulas with elements in the same or
adjacent line 1,429,808 3984
Average number of rows in tables 10.77 31.91
Average number of columns in tables 4.86 12.15

10t
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Figure 7: Distribution of tables in FinFormulas.
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Figure 8: The effectiveness of generation methods in each
formula type. Best viewed in color.

A.2 Cell Pair Candidate Generation

For cell pair classification task, we need to consider how to generate
the candidate pairs for each cell (i, j). Exhaustively enumerating
all the possible pairs leads to a quadratic space (in table size). So we
generate candidates for result cell (i, j) by two strategies. Strategy

S$1: make pair with cells in the same row or column (i, -), (-, j),
which covers over 75% of formulas. Strategy S2: make pair with

cells in the adjacent rows or columns (i + 1,-), (-, j £ 1), which
covers over 99% of formulas combined with S1. We apply different
strategies for different types of formulas so that more than 60%
of candidates are removed while over 99% of positive pairs are
reserved. This is detailed in Table 6.

A.3 Training Settings

We use a 128-dimsional character-based embedding layer for text
module. We only keep 1000 most frequent tokens in our vocabulary
and the set the rest as UNKONW token. Meanwhile, we replace the text
of date with a special token DATE. All text in non-header cells are dis-
carded. The dimensions of Bi-LSTM, LSTM hidden, fully-connected
layer before the softmax layer are 128. The CN Ny encoder contains
4 convolutional layers, with kernel size (3 * 3 % 16). The number of
tables in each mini-batch is 84. The balance factor « in loss is set to
1. Adam [17] with learning rate 0.003 is used for optimization. We
perform 5-fold cross-validation to evaluate our model performance
and report metrics averaged over 5 folds.

A4 Case Study

We show some bad cases of our model prediction in Figure 9. Note
that since the original tables are big, the tables in Figure 9 are
simplified to save the space.

In Figure 9(a), our method loses the formula C5=B5/B8 while suc-
cessfully recognizing the other four formulas in column C, namely
C3=B3/B8, C4=B4/B8,C6=B6/B8, C7=B7/B8. The differences between
the error formula and the four correct formulas are their row head-
ers with different people names. Even though they belong to the
same entity type, i.e., people, their word-level representations might
quite different. Applying entity extraction over table cells in an
initial step might be a good solution to alleviate this issue.

A I B [ ¢C A [ 8 [ ¢ [ o
[t 2018 1 |Revenue 2019 2018 2017
2 Paid %| | 2 |Prime operating revenue R | e R
Sha:es = | 3 | Infrastructure ke il b
|3 |Alan 4| Water  weee e e
[2]dason ~ wem =1 Feog
- N 15| Foo [ . .
[+ Joon - .
[7 |Tom > [wm| | 7 |Other Wk wee wee
) - o 8 |Total [ o[ o[ =

(@) (b)

Figure 9: Two bad cases. The bordered rectangle indicates
that this is a result cell, the borderless rectangle indicates
that this is an argument of a formula, the red box indicates
an false formula, and the green box indicates an true formula.
Best viewed in color.



Table 7: Performance on DECO-F.

Result cell . Formula level
R Pair level
detection on +
TaFor 65.23 79.34 56.42
—text 5.31 1.86 2.32
—vision 58.82 70.26 51.12

In Figure 9(b), our method successfully recognizes the formulas
in C8 and D8, namely C8=C2+C7, D8=D2+D7. However, for cell B8
the predicted formula is B8=B2+B3+B7. In other words our model
makes a wrong prediction that a triplet of (B8, f;7,B3) exists, while
it makes the correct predictions that the triplets of (C8, none, C3)
and (D8, none, D3) hold. In our method, we replace the text of date,
e.g. cells B2, C2, D2, with a special token DATE in advance. Thus,
readers might think that the embeddings of the following 3 pairs,
ie., (B8, B3), (C8, C3), (D8, D3), should be the same. However, this
is not true since our model connects all the column headers into
a sequence and deliberately captures its sequential information to
detect the horizontal formulas (Observation 3 in Section 2.2.1) via
LSTM in Equation 4.

B DETAILS ON DECO-F

B.1 Pre-processing and Statistics

To test our model on different domains, we generate a dataset
DECO-F from DECO [19]. DECO is a dataset of spreadsheet files,
annotated on the basis of layout and contents. It has 1,165 files,
extracted from the Enron email archive [18]. Here, Enron is an
energy, commodities, and services company, so this dataset is not
focused on finance as FinFormulas dataset. This dataset marked the
borders and headers of tables inside each worksheet. We extract
all the annotated tables and filter the numerical formulas from the
existing Excel formulas in these tables and use them as ground
truth to form our DECO-F dataset.

We use openpyx1 to parse the Excel file in DECO corpus. For
each table of the annotated results of DECO, we extract and parse

the Excel formulas in its table region as the ground truth, use the
Header cells and GroupHeader cells in DECO as its row headers and
column header, respectively. The text in table headers are stored,
in which we convert the text of datetime into “YY/mm/dd” format
string. We read the row height for each row, the column width for
each column, the visibility of the table line, font size, font style to
build the visual appearances of the table.

Some statistics about DECO-F are shown in Table 5. The re-
sults show there are 4,014 formulas in 1,263 tables, which have
an average of 31.95 rows and 12.15 columns. Comparing with Fin-
Formulas, tables in DECO-F in general have a larger table size
and contains fewer formulas. We publish this dataset in https:
//github.com/qingping95/DECO-F.

B.2 Experiment

As the tables that contain formula d, gr, and Avg are few (<30) to
train our model, we only report the performance on + formulas in
Table 7. In DECO-F, the model can extract over 50% of formulas
correctly. Similar to FinFormulas corpus, we find the model depends

more on text, but the vision can help improve the result. Compared
with FinFormulas corpus, the performance drops sharply for two

main reasons. First, the number of tables containing formulas in
DECO-F is too small (257) to support an end-to-end model to ob-
tain a satisfactory recognition capability. Second, the erroneous
formulas in DECO affect the model performance. According to an
investigation [13] on the spreadsheets of Enron corpus, 24% of En-
ron spreadsheets with at least one formula contain an Excel error.
On the other hand, Koci et al. [19] point out that more than 20%
“derived" cells do not contain Excel formulas, where the derived
cells represent aggregations of data in DECO corpus. The poor
performance on DECO-F means that, as indicated in Appendix A 4,
we may have to study how to transfer common sense, world knowl-
edge, and natural language understanding results to improve the
performance of table formula recognition on small dataset.


https://github.com/qingping95/DECO-F
https://github.com/qingping95/DECO-F
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