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Abstract Richly formatted documents, such as financial
disclosures, scientific articles, government regulations,
widely exist on Web. However, since most of these
documents are only for public reading, the styling
information inside them is usually missing, making them
improper or even burdensome to be displayed and edited in
different formats and platforms. In this study we formulate
the task of document styling restoration as an optimization
problem, which aims to identify the styling settings on the
document elements, e.g. lines, table cells, text, so that
rendering with the output styling settings results in a
document, where each element inside it holds the (closely)
exact position with the one in the original document.
Considering that each styling setting is a decision, this
problem can be transformed as a multi-step decision-making
task over all the document elements, and then be solved by
reinforcement learning. Specifically, Monte-Carlo Tree
Search (MCTS) is leveraged to explore the different styling
settings, and the policy function is learnt under the
supervision of the delayed rewards. As a case study, we
restore the styling information inside tables, where structural
and functional data in the documents are usually presented.
Experiment shows that, our best reinforcement method
successfully restores the stylings in 87.65% of the tables,
with 25.75% absolute improvement over the greedy method.
We also discuss the tradeoff between the inference time and
restoration success rate, and argue that although the
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reinforcement methods cannot be used in real-time
scenarios, it is suitable for the offline tasks with high-quality
requirement. Finally, this model has been applied in a PDF
parser to support cross-format display.

Keywords styling restoration, monte-carlo tree search,
reinforcement learning, richly formatted documents, tables

1 Introduction

People around us, academicians, financial practitioners,
lawyers, government officers, and ones from other
industries, always complain to us about the documents every
day they need to deal with, most of which are Richly
Formatted Documents, like PDF files. These documents
publicly disclose the critical information (the factual data,
activities, events, regularities and so on) from academia,
finance, law, government, and other verticals, and thus play a
cornerstone role to reveal and guide the operation of
socio-economics. However, since most of these documents
are only for public reading, the styling information inside
them is usually missing, making them improper or even
burdensome to be displayed and edited in different formats
and platforms.

Before detailing how these documents trouble us, let us
see how they are represented first. Since these documents
are mostly for reading but not for editing, they are designed
to only store the visual and textual information. For the
example in Fig. 1(a), a screenshot of a table in a typical

© Higher Education Press 2020 
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Attributable to BHP shareholders
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controlling 

interests

Total 

equity

Share capital Treasury shares

Reserves

Retained 

earnings

Total equity 

attributable 

to BHP 

shareholders

BHP

Billiton 

Limited

BHP 

Billiton

Plc

BHP 

Billiton 

Limited

BHP 

Billiton

Plc

Balance as at 1 July 2017 1,186 1,057 (2) (1) 2,400 52,618 57,258 5,468 62,726

Total comprehensive income - - - - (87) 3,695 3,608 1,118 4,726

Transactions with owners:

Purchase of shares by ESOP Trusts - - (159) (12) - - (171) - (171)

Employee share awards exercised

net of employee contributions - - 156 13 (139) (30) - - -

Employee share awards forfeited - - - - (2) 2 - - -

Accrued employee entitlement

for unexercised awards - - - - 123 - 123 - 123

Distribution to

non-controlling interests - - - - - - - (14) (14)

Dividends - - - - - (5,221) (5,221) (1,499) (6,720)

Transfer to non-controlling interests - - - - (5) - (5) 5 -

Balance as at 30 June 2018 1,186 1,057 (5) - 2,290 51,064 55,592 5,078 60,670

��

��
��

��

(a) A screenshot of a table in a typical financial document. The black box
gives the position of the character “T" on the page. The coordinates of its
upper left and lower right corners are (48, 53), (54,56).
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(b) We assume that the internal table lines in blue are recognized correctly in
advance. However, this predecessor step can only output its position range,
shown as the grey shadow for each vertical line. For example, the position
range of the leftmost vertical line is [72, 81]. This range is decided so that
any vertical line in it does not intersect with the text on its left and right sides.
Here, the vertical lines are put at the middle of their position ranges.
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(c) This table is rendered with a default styling settings, where each vertical
line is put at the middle of its position range and each cell is set to left-
alignment.
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(d) After styling restoration, each vertical line has its exact position and each
table cell has its right setting of text alignment (shown by the icon). The cells
without any icon are all with the Right Alignment setting. The abbreviations
of text alignment settings are defined in Table 1.

Fig. 1 A demonstration of table styling restoration problem by using a table
in a typical financial document.

financial document1). This PDF file only records the
absolute position of each character inside it. Specifically,
each character in the file corresponds to a bounding box,
which gives its exact position on the page. For instance, the
black box in Fig. 1(a) with the coordinates of its upper left
and lower right corners gives the position of the character
“T" on the page. With all the visual and textual information,
the pages can be shown properly so that people can
cognitively understand the semantics of table cells even
though all the internal table lines (the internal table
structure) are missing.

However, in many business use cases people always have
huge demands in reusing, displaying, editing these tables in
different formats and platforms. For example, we need to
copy the table in Fig. 1(a) into HTML, Word, or LaTex files,
and even edit the text inside the table cells. However, since
the table styling settings are missing in the original file,
people constantly have the experiences that the copied result
in the destination file, rendered with the default styling
settings on cell alignments and line positions, is far from the
original table. As shown in Fig. 1(c), with all left-alignment
on each table cell the positions of cell texts change
dramatically, and the table semantics become confused so
that human might fail to recognize the hierarchical
relationships among the horizontal and vertical headers in
the table. Hence, it still takes lots of manual work to modify
the styling settings so that the target table can be displayed
elegantly in the new file type.

People also try many ways to cope with this issue, like
saving the table as a bitmap with high resolution to support
cross-platform and cross-format display. However, the
bitmap cannot support the interactive editing (e.g. removing
a column, revising the text in a cell) in the target table.
Hence, only with the detailed styling settings, the table can
be rendered properly in the target platform to support
interactive editing and displaying.

As a case study towards the general purpose of rich-text
document styling restoration, we focus on restoring the
styling information inside tables, where structural and
functional data in the documents are usually presented. For
this task we assume that the table visual information and
internal table structure are given. For instance, the vertical
and horizontal table lines in blue in Fig. 1(b) are recognized
in a previous step. However, this predecessor step can only
output the position range of each vertical line, shown in the

1) BHP Annual Report 2018. Retrieved from https://www.bhp.
com/-/media/documents/investors/annual-reports/
2018/bhpannualreport2018.pdf
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grey shadow in Fig. 1(b) (detailed in Section 3). The text
alignment settings on table cells are all unknown, either.
Thus, for a given table this task is to restore its styling
information, including the exact position of each vertical
line, the text alignment on each cell, and so on2). Fig. 1(d)
shows the output of this problem. Only with these styling
settings, the table can be displayed and edited in different
formats and platforms.

Although recent years have witnessed an increasing
interests in layout analysis and information extraction in
these documents [1], including analyzing the document
structure [2], extracting paragraphs, tables and figures [3–7],
and the their reading order [8, 9], to our best knowledge
there is no previous studies on restoring styling information
of richly formatted documents. As a pioneer work towards
this end, we focus on restoring the styling settings for tables
as tables always contain important structural and functional
data in the documents. We also argue that the proposed
algorithm can be easily extended to restore the styling
information for all the content inside richly formatted
documents.

Since there are no styling information but only ground
truth positions of cells, we propose an improved
reinforcement learning algorithm to the problem of table
styling restoration. Specifically, we define a state as the
current styling settings on a table, and leverage Monte-Carlo
Tree Search (MCTS) to explore the state space. The policy
function of state transition is learnt so that rendering with
the output styling settings results in a table, where the text in
each cell holds the (closely) exact position with the one in
the original table. In other words, the reward in
reinforcement learning is developed as the similarity
between rendered and original positions of all the elements
inside the table.

Based on a data set of 20,000 tables from the financial
market, we empirically show that the proposed algorithm
can solve the problem of table styling restoration well. In
two conditions (namely one strict and one loose condition)
in measuring the success for table styling restoration, our
method achieves the success rate of 69.65% and 87.65% on
the test tables, respectively. Comparing with the greedy
method, our algorithm has 35.9% and 25.75% absolute
improvement. Additionally, we study the different success
rate for the tables with different number of table cells. We
find that the improvement mostly comes from the tables with
more cells, indicating more complicated table structures. We

2) We do not consider table horizontal lines in this study since they are
usually put at the middle of their position range.

also discuss the tradeoff between the inference time and
restoration success rate, and argue that although the
reinforcement methods cannot be used in real-time
scenarios, it is suitable for the offline tasks with high-quality
requirement. As some case studies, we also make the videos
to show how the reinforcement method and greedy method
adjust the styling settings step by step for table styling
restoration. We strongly recommend readers to watch these
videos3).

With the support of this study, we have published a tool of
PDF parser4) for open access (detailed in Section 5.4), where
users can copy a table from PDF files into other file types, or
even paste the LaTex code of this table into the editor. The
styling settings obtained in this study are embedded in this
tool to ensure that the editable target table appears (almost)
the same with the original one.

The contributions of our work are summarized as follows:
• To the best of our knowledge, this is the first study that

formulates the problem of document styling restoration
as an optimization problem, where we aim to identify
the styling settings on the table elements, which
minimizes the distance between their rendered
positions and the ground truth positions (detailed in
Section 3).
• Considering that the styling setting on each document

element is a decision, this optimization problem can be
transformed into a multi-step decision-making
problem, and then solved by reinforcement learning.
We also develop some heuristics to guide the search in
the learning (detailed in Section 4).
• We empirically show the effectiveness of the proposed

method, and release a tool of PDF parser with styling
restoration (detailed in Section 5).

2 Related Work

Table-related tasks. Most studies in this area focus on table
understanding from richly formatted documents. Since the
important structural and functional data in the documents are
usually stored in tables, table understanding is the key step
to automatic building of knowledge graphs. Table
understanding can be further decomposed into three
sub-tasks, including table region detection, table structure
recognition, and table semantic interpretation. Table
detection is to detect the location of tables in a page [4–7].

3) http://bj.cheftin.com:18080/tsr/cases.html
4) http://www.pdflux.com. A PDF parser for open access.
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Table structure recognition is to recognize the internal table
structure [10–13], namely the the grid structure and the
spanning cells. With the table structure, table semantic
interpretation is to interpret the two-dimensional table into
relational database [14]. In this study we recognize the table
region and the table structure for each page in a predecessor
step. However, this preprocess cannot tell the exact positions
of table lines, nor the text alignment on table cells. Thus, we
aim to restore these styling settings for cross-platform
display and editing.

There are also some studies for the applications over the
extracted tables, including the semantic or ad hoc search over
tables [15,16], table classification and clustering [17], on-the-
fly table generation for a given query [18], and populating
rows and columns for entity-focused tables [19]. It is worth
mentioning that all these table-related applications need the
table styling information if we need to display and edit them
on different platforms.

Reinforcement learning. Because of the huge state
spaces in our problem (detailed in Section 3), it is
impossible to use tabular solution methods of reinforcement
learning [20] to find the exact optimal solution. In recent
years, there are some studies that combined tabular solution
methods and deep neural network to approximate value
function and policy, such as DQN [21–23]. In 2006, Coulom
et al. [24] first proposed Monte-Carlo Tree Search (MCTS)
to improve a Go-playing program, which provides the
flexible control and efficient selectivity in simulation. Since
2016, Silver et al. [25, 26] combined MCTS with
reinforcement learning to train a better Go-playing policy
than humans. MCTS is considered a powerful method to
improve policy [20]. These methods have been proven to
perform well in large state spaces, shown in the great
success in AlphaGo. Hence, to find optimal solution of table
styling restoration problem, we propose a policy iteration
method that employs a deep neural network to evaluate
policy and leverages MCTS to improve policy.

3 Problem Formulation with Notions and
Denotations

First, we define the notion and denotation used in this study.
Here, each table E consists of a set of table elements,
namely e = (e1, · · · , ei, · · · , ek). In this study we consider
two types of table elements, namely table cells and vertical
lines. Thus, ei (i = 1, · · · , k) refers to a cell or a vertical line
in the table. Then, si refers to the styling setting on the

element ei, and s = (s1, · · · , si, · · · , sk) refers to all the
settings on these elements. Different table elements have
different styling settings, summarized in Table 1. For a table
cell, its styling can be set to CA (center alignment), RA (right
alignment), or LA(∆) (left alignment with ∆ space
indentation). For a vertical line, its styling setting refers to
its exact horizontal position within a range.

Table 1 The stylings of the cell and line.

Element Styling

Cell CA: Center Alignment
RA: Right Alignment
LA(∆): Left Alignment with ∆ space indentation
(∆ = 0, 1, 2, 3, 4)

Line x: Horizontal position

With the styling settings s, a rendering function G outputs
the positions of all these objects, namely

G(s) = (x1, · · · , xi, · · · , xk)

where xi is the horizontal position of element ei. Specifically,
when ei is a vertical line, xi can be directly obtained from si.
When ei is a cell, the horizontal position of the text within
this cell can be computed as

xi =


(xl + xr − length)/2, si is CA
xr − length − 0.5w̄, si is RA
xl + (0.5 + ∆)w̄, si is LA(∆)

(1)

where xl and xr are the horizontal position of the vertical lines
on its left and right side, length is the length of the text within
the cell, w̄ is the average length of the characters in the table.

Given the ground truth positions of elements, namely x∗ =

(x∗1, · · · , x
∗
i , · · · , x

∗
k) where x∗i is the ground truth position for

ei
5), we calculate the distance between x∗ and G(s) as

distance(G(s), x∗) = max
ei is a cell

|xi − x∗i | (2)

In other words, for the text in each cell we calculate the
distance between its ground truth position and rendered
position, and the distance between x∗ and G(s) is the
maximal distance among them.

Problem Formulation. Given all the table elements e, the
table structure, and the ground truth positions x∗ we aim to
find the styling setting s∗ which satisfies

s∗ = arg min
s

distance(G(s), x∗) (3)

5) Note that there are no ground truth positions of vertical lines, they are
set to none in this study.
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In other words, we aim to identify the styling settings on the
table elements, which minimizes the distance between their
rendered positions and the ground truth positions. This
problem formulation is shown in Fig. 2.

Ground truth 
positions

!∗
Styling
#

Styling
restoration Rendering Rendered

positions
$(#)

Minimize
'()*+,-.($ # , !∗)

Fig. 2 The problem of table styling restoration.

Since there may not exist an optimal styling setting s such
that distance(G(s), x∗) = 0, we introduce the fault-tolerant
hyper-parameter α into this problem, such that only if

distance(G(s), x∗) 6 α ∗ w̄ (4)

we call this “styling restoration” is successful. It is clear that
smaller α makes this problem more difficult to success.

Problem Analysis. The challenge to this problem is that
the position of an element depends not only on the styling
setting of itself, but also on the settings of the elements
around it. As you can see in Eq. (1), the position of a table
vertical line directly affects the positions of the text inside
the cells on its two sides. Additionally, this intertwined
relationship can propagate throughout the neighboring table
cells and lines. Thus, the greedy method may not work well
on this problem, which will be validated in the experiment
section. Meanwhile, if each element has l possible settings
and there are k elements in total, the state space of styling
settings is lk. When k is up to the order of 100 (usual case
for financial tables), it is impossible to enumerate all the
possible styling choices to find the optimal one. Hence, we
leverage reinforcement learning to search this optimal
solution.

We also summarize the differences between our problem
and other general reinforcement learning tasks as follows.
First, to avoid redundant actions and even action deadlock in
the output action sequence, we need to consider all the
predecessor actions which have been taken before the
current state. We expect to learn a “concise” policy from the
initial state to the target state without redundant actions.
Second, for each state we have its distance to the ground
truth position. Although this distance cannot be used as
reward for reinforcement learning, we expect to check how
this distance can be used as prior to guide the search in
MCTS for more efficiency. Third, different from the games
with fixed-size boards (e.g., Chess, Go, etc.), the tables for

styling restoration may have different numbers of rows and
columns, and the internal table structure in terms of merging
cells may also be totally different. We expect to see whether
the reinforcement method still works in this problem
scenario.

4 Solutions

Considering that each styling setting is a decision, this
problem can be transformed into a multi-step
decision-making task over all the document elements. Thus,
we use a Reinforcement Learning (RL) algorithm to solve
the problem. Specifically, in a table, we consider the styling
setting s ∈ S as the state, where S is the state space that
contains all styling settings of this table. Then,
st = (st1, · · · , sti, · · · , stk) refers to the state at time t. We
take an action a ∈ A that transforms the state from st to st+1.
The action spaceA is

A = {ae|ae ∈ Action(e), e ∈ e}, (5)

where Action(e) indicates the actions of element e that is
defined in Table 2 by the element type. In this study, each
action a changes the styling setting of only one element in
the table. For example, it changes the styling of a cell to CA,
or moves a line to left by 1 pixel. We define success value of
a state as 1 if the styling restoration of the table is successful
from the state, otherwise -1. We use success value as the
reward of a state. Note that the reward for this reinforcement
learning is delayed. In other words, a state could get a
reward only if it meets the termination conditions, namely
the styling restoration is successful or the action space of the
current state is empty. Then, the reward of the final state can
be regarded as the rewards of all the predecessor states in the
search sequence.

Table 2 The actions of the cell and line.
Element Action

Cell Change styling to s (s = CA, RA, LA(∆))
Line Move to left by Λ pixel (Λ = 1, 2, 4, 8)

Move to right by Λ pixel (Λ = 1, 2, 4, 8)

To avoid redundant actions and even action deadlock in
both training and inference, we require that only one action
can be performed onto each cell; each line can be moved
only towards one direction. It indicates that the action space
for the current state might depends on all the predecessor
actions. Thus, we need to consider all the predecessor
actions to the current state in developing the value network



6
Hongwei Li et al. Rich-text document styling restoration via reinforcement learning

US$M

Attributable to BHP shareholders

Share capital

Reserves
Retained
earnings

BHP
Billiton
Limited

BHP
Billiton
Plc

Balance as at 1 July 2017 433,540,800.00 188,687,292.62 54,940,737.19 1,738,920,298.94

Total comprehensive income 68,014,189.02

Transactions with owners:

Purchase of shares by ESOP Trusts 

Employee share awards exercised
net of employee contributions

Employee share awards forfeited 433,540,800.00 188,687,292.62 54,940,737.19 1,806,934,487.96
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Fig. 3 A successful trial. As shown by the two red rectangles, the first action changes the alignment setting of the corresponding cell from LA(0) to CA.
As shown by the two red arrows, the second action moves the corresponding vertical line to left.

(detailed in Section 4.2). Through reinforcement learning,
we hope to learn a “concise” policy from the initial state to
the target state without redundant actions.

Next, we first introduce the framework of RL and propose
the used deep learning model. Then, we incorporate a
heuristic feature into RL to further improve the model
performance.

4.1 The Framework of RL

The main idea of RL is to use the MCTS-based policy to
select an action at each state. At a state, an MCTS guided by
a value network (detailed in Section 4.2) is executed to
calculate the probability distribution π to select an action.
For training the policy, we conduct several trials that
produce the training data. In return, we update the policy
based on the training data. We consider the process of
generating data and updating policy a round and loop the
process until convergence. After we training the policy, we
use it to restore the styling of a table. This inference step is
very similar to the trial step, except that each action is taken
not by sampling from the probability distribution π, but
directly using the mode of π. We elaborate on RL from three
aspects: generating data, updating policy, and MCTS.

Generating training data and model update. We
conduct trials to generate training data. In a trial, we use
MCTS at each state to generate an action probability
distribution π, which indicates the probability of taking an
action at this state. Namely, π(a) is the probability of taking
the action a at this state. Then, we sample an action a by π,
which changes the current state to the next state. We
perform this trial until meeting the end conditions that is
reaching a state s that satisfies Eq. (4), or exceeding a
specified number of states, or no next state to go. Finally, we

get the final styling setting s. If s satisfies Eq. (4), we set the
success value of all the states in this trial to 1. Otherwise, if
the end is caused by exceeding a specified number of states
or no next state to go, we set the success value of all these
states to -1. Thus, we get one training sample per state in a
trial. The success value of the state is used as the supervision
signal to train the value network. Fig. 3 shows the training
data we get from a successful trial.

At the beginning of the training, we randomly sample a
table from the table training set uniformly. Then, we run the
trial on this table and put all the generated training samples
into the buffer. If the buffer is full, we replace the earliest
training samples. We sample training data uniformly from
the buffer as a batch for stochastic gradient descent. The loss
function of the model is as follows:

loss = (z(s) − Vθ(s))2 (6)

where s is the state, z is the success value of the state, Vθ is
the value network with parameters θ.

Next, we will detail the process of MCTS for action
generation.

MCTS. We adopt the MCTS that is similar to [26]. The
process of generating the action probability distribution π is
shown in Fig. 4. We first create a MC tree, whose root node
is the current state. Then, set Q, U and N of the root node
to be 0. Here, Q(s, a) is the action value of taking action a
at state s; U(s, a) is the visit-count-adjusted score; N(s, a) is
the number of visits. We plot these values on the resultant
node of the action. These three values will be updated in the
continuous simulation. The process of generating π will run
simulation K times at most. Each simulation consists of the
following three steps:

1. Selection. We first select a leaf node of MC tree for
following expansion. The selection starts from the root
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Fig. 4 The process of generating the action probability distribution π. There shows one simulation: 1) the root node chooses its right child node as the leaf
node; 2) expand the leaf node and evaluate its child nodes; 3) update the leaf node and its ancestors.

node and chooses the child node that has the largest Q +

U value as the next node. Iterate the process until it
reaches the leaf node.

2. Expansion and Evaluation. If the leaf node is a
termination node that meets the end conditions, we set
the success value V(sl) of the leaf node as 1 if it is a
success state, or -1 if it is not. Otherwise, we expand all
child nodes for the selected leaf node and set Q, U and
N of each of its child nodes to 0. This process is called
expansion. Next, we use the value network to evaluate
the success value V(sl) of the leaf node and the success
value of each of its child nodes. Meanwhile, we
calculate the prior probability P(s, a) of each of its child
nodes (detailed in Section 4.2 and 4.3), and update U of
each of its child nodes according to Eq. (8).

3. Backup. We update Q, U and N of the leaf node and all
its ancestors according to Eqs (7-9), where s is the state
of a node.

N(s, a)← N(s, a) + 1 (7)

U(s, a)←
P(s, a)

1 + N(s, a)
(8)

Q(s, a)← Q(s, a) +
V(sl) − Q(s, a)

N(s, a)
(9)

It can be seen from Eqs (7-9) that Q is affected by the
output of the value network, and U is determined by the
prior probability P and the number of visits N. The selection
step at each simulation is determined by Q and U. This
ensures that the nodes with the higher Q are preferentially
visited while the number of visits is the same. When Q is
not much different, the nodes with fewer visits have an
opportunity to be selected, which makes the simulations
more diverse.

The root node of the MC tree corresponds to a state sr.
After simulations, the probability of selecting an action a at

the root node is

π(a) =
N(sr, a)∑

b∈A N(sr, b)
(10)

where π is the action probability distribution of the state sr.

4.2 Value Network

For the studied problem we develop the following value
network, shown in Fig. 5. We find that the target position,
current state and historical actions are all relevant to the
current state value. Specifically, the target position contains
the ground truth position of all elements. The current state is
the current styling setting s. The historical actions record all
actions that has been taken from the initial state to the
current state. We put these three types of information into
target image, current image and historical image. Thus, the
input of value network consists of these three images. The
process of generating these images is as follows:

• Target image: draw an image based on the ground truth
position of each element. Each pixel in the image has a
value. Specifically, the value is set to 1 when there is a
character or line at this pixel; otherwise, set it to 0. This
image is called target image.
• Current image: after rendering with the current styling

setting s, we draw an image for the current state. The
value at each pixel is set in a similar way to that in the
target image.
• Historical image: draw an image similar to the current

image. However, we set the value at each pixel in a
different way. We set it to 1 (or -1) when this pixel is in
a cell or on a line onto which an action has taken
towards the right (or left) direction. Otherwise, we set it
to 0.

Eventually, we concatenate these three images into a
three-dimensional tensor as input to a convolutional neural
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Fig. 5 The value network of RL. In these images, a black pixel indicates 1; a white pixel indicates 0; a purple pixel indicates -1. These images are
concatenated as input to a convolutional neural network.

network (CNN). For higher speed, we use a simple CNN
structure, as shown in Fig. 5. The CNN consists of 6
convolutional layers, 6 batch normalization layers, 6 max
pooling layers and 2 fully connected layers. Each kernel of
the convolution layers is 3 × 3. Each kernel of the max
pooling layers is 2 × 2. The entire network only has a total
of 454,308 parameters. The final output of CNN is
Vθ(s) ∈ [−1, 1]. We define the prior probability P(s, a) of
taking action a at state s as:

P(s, a) =
eβVθ(sa)∑

b∈A eβVθ(sb) ∈ [0, 1] (11)

where sa is the resultant state of taking action a at state s; β
is a hyper-parameter; Vθ(sa) is transformed from [−1, 1] to
[e−β, eβ].

4.3 Greedy Method and RL with greedy heuristics

We also develop a Greedy Algorithm (GA) for this problem.
Namely, at each state, we select an action that minimizes the
distance between G(st+1) and x∗ at state st. The process ends
until Eq. (4) is satisfied or the distance does not decline any
more. Clearly, GA has strong prior knowledge. It explicitly
uses the difference between ground truth positions and
rendered positions of the states. This prior knowledge may
have the problem of local optimum.

To introduce this prior knowledge into reinforcement
learning, we develop the following Reinforcement Learning
algorithm with the Greedy heuristics (RLG). Specifically,
RLG is the same as RL except that the prior probability in
Eq. (11) is replaced with:

P(s, a) =
eH(sa)∑

b∈A eH(sb) , (12)

where

H(sa) =
1

distance(G(sa), x∗) + γ
(13)

Here, γ is smoothing coefficient, H is a function that
transforms distance from [0,+∞) to (0, 1

γ
].

It is worth mentioning that this distance between a state
and the ground truth position cannot be uses as true reward
for reinforcement learning. That is, a state with a small
distance might not indicate that it is a good intermediate
state towards the final success. Thus, this distance can only
be used as the heuristic to guide the search in MCTS.

5 Experiment

5.1 Data and Settings

We downloaded a total of 1,819 public PDF documents from
CNINFO6). Most of these documents are the annual reports
of the listed companies. Based on a table recognition tool, we
get 20,000 tables with their internal structures. However, the
styling settings of these tables are all missing. We split these
tables into a training set with 16,000 tables, a validation set
with 2,000 tables and a test set with 2,000 tables. The detailed
information of these tables in terms of the number of cells,
rows, and columns are shown in Table 3.

In each experiment, we set two values of hyper-parameter
α, 0.3 and 0.1. Six methods are tested: GA-r, GA-d, RL-r,
RL-d, RLG-r and RLG-d. The “-r” means the random
initialization that sets the initial styling of cell alignment
randomly; the “-d” means the default initialization that sets
the initial styling for each cell by selecting the closest

6) http://www.cninfo.com.cn. An information disclosure web-
site by the China Securities Regulatory Commission.
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Fig. 6 The success rate of each model on the validation set.

Table 3 The detailed dataset statistics.

Documents 1,819
Tables 20,000
Training tables 16,000
Validation tables 2,000
test tables 2,000
Average number of cells 51.49
Average number of rows 10.27
Average number of columns 5.33
Maximum number of cells 630
Maximum number of rows 68
Maximum number of columns 33

alignment to the target. The initial position range of each
vertical line is obtained from the previous table recognition
step.

There are some other hyper-parameters. The height and
width of the rendered image are both 256; the buffer size is
4096; the batch size is 16; β in Eq. (11) is set to 5; the
smoothing coefficient γ is 0.05. the number of simulations K
is 50. We use the Adam optimization method and the
learning rate is 0.01.

We used 4 GPUs (GeForce GTX 1080 Ti) to train
reinforcement learning models: 1 GPU for updating model,
3 GPUs for generating data. We have a total of 48 processes
for generating data, 16 processes per GPU. And we use 64
processes for evaluation.

5.2 Evaluation Measure

Given a dataset D = (e(1), ..., e(n)), we use the following two
measures to evaluate the effectiveness and efficiency of the
proposed methods. To measure the effectiveness, we define
the first measure, success rate, as follow:

Success Rate =
|{s̄(i) | s̄(i) satisfies Eq. (4)}|

n
(14)

where e(i) is the i-th table in the dataset D, s̄(i) is the final
styling setting of e(i) after the inference.

To measure the efficiency for inference, we define the sec-
ond measure, inference time, as follow:

Inference Time =

∑n
i=1 t̄(i)

n
(15)

where t̄(i) is the running time of the inference of the i-th table.

5.3 Experimental Results

We conduct the experiments to answer the following
questions in two aspects:

1) In terms of success rate, is the reinforcement method
better than the greedy one? Does introducing the greedy
heuristics into RL further improve the performance? How
does the success rate is affected by the initialization of the
table styling settings and the table complexity in terms of
numbers of rows, columns, and cells?

2) In terms of inference time, how much time difference
does there exist between the reinforcement method and the
greedy one? What is the time percentage of each module in
the inference process of the reinforcement method?

To this end, we train the value network on the training set.
Along the training process, we evaluate the success rate on
the validation set every 50,000 batches of training. Curves of
success rate are shown in Fig. 6. After 400,000 batches of
training (almost converged), we get the final model for each
method and then use it for the evaluation on the test set.

5.3.1 Evaluation on Success Rate

Table 4 shows the success rate of all the methods on the
validation and test sets. Clearly, for both α = 0.1 and
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Table 4 Success rates of models on validation and test set.

Method Validation set/% Test set/%
α = 0.3 α = 0.1 α = 0.3 α = 0.1

GA-r 55.70 29.35 56.15 30.65
GA-d 62.80 34.15 61.90 33.75
RL-r 86.35 66.10 85.90 67.15
RL-d 87.90 67.45 87.40 68.60

RLG-r 87.55 68.30 86.95 67.90
RLG-d 88.20 69.20 87.65 69.65

α = 0.3, the success rate of RL and RLG are much greater
than GA. RLG achieves the best success rate of 69.65% and
87.65% on the test set when α = 0.1 and α = 0.3
respectively. Comparing with GA, it has 35.9% and 25.75%
improvement. Note that performance on the validation and
test sets are quite similar.

Table 4 also shows that the success rate of RLG is greater
than RL and the absolute improvement is between 0.5% and
2.00%. Note that this evaluation is based on the final model
after training. Fig. 6 also shows the model performances
along the training process. As we can see, at the 50,000-th
batch, the gap between the success rate of RLG-d and RL-d
is 12.35%. However, at the 400,000-th batch, the gap
becomes 0.65%. Thus, we argue that RLG works better in
the early stage of training and can converge faster.

Table 4 also shows that a model with default initialization
for styling settings has higher success rate than with random
initialization. The reason might be that a table with random
initialization is more complex for styling restoration and
prone to make algorithms get stuck in local optimum. Also,
the improvement from GA-r to GA-d is greater than from
RL-r to RL-d and from RLG-r to RLG-d. It indicates that
RL and RLG are more tolerant to the initialization
conditions.

Additionally, we divide the tables in the test set into
groups according to the number of table cells (namely, [1,
30), [30, 60), ..., [180, 210)), and calculate the success rate
of each model on each group. As shown in Fig. 7, GA, RL,
and RLG have the similar performance when the cell
number is in [1, 30). As the cell number increases from 30
to 120, RL and RLG performs much better than GA. The
performance improvement mainly comes from the tables in
this range. Lastly, as the cell number is bigger than 120, the
gap between RL and GA becomes smaller. This is mainly
because the number of training data in this range is small.
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Fig. 7 The success rate of each model on each table group (with α = 0.3).

5.3.2 Evaluation on Inference Time

Given a table, the reinforcement method uses MCTS for
styling restoration. For each action, it needs K simulations.
And for each simulation, it needs to render the resultant
states into images as the input of the value network. Thus, it
is time-consuming. Here, we detail the techniques used to
reduce the inference time, and then discuss the tradeoff

between inference time and success rate.

The following techniques are proposed to reduce the
inference time.

Local rendering. Since each action only changes the state
of one table element, only the positions of some local
elements will be changed accordingly. Thus, for a new state
s we adopt local rendering to get its image and calculate
distance(G(s), x∗) more efficiently.

Grouping of table elements. It is more likely that some
adjacent table cells have the same styling settings. For
example, if the left position of the cells in a column are all
the same, we can put them into one group and this group of
cells share the same styling setting. Since the number of
groups is much smaller than elements, this rule dramatically
reduces the search space.

Avoiding redundant actions and action deadlock. We also
use some rules to avoid the taken actions form a deadlock.
Specifically, we can take only one action onto a table cell;
for a vertical line we can only move it towards one direction.
Without these rules, it is possible to have redundant actions
on an element, and even form a deadlock. Through
reinforcement learning, we hope to learn a “concise” policy
from the initial state to the target state without redundant
actions.

After the optimizations above, the detailed statistics about
time on test set are shown in Table 5. The inference time
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Table 5 Inference time of each models on test set.

α Method #Actionsa #Statesb @Renderingc @Imaged @Networke
Inference time/sTime/s % Time/s % Time/s %

0.3 GA-r 9.39 397.61 0.26 86.67 - - - - 0.30
GA-d 6.07 218.10 0.15 71.43 - - - - 0.21
RL-r 25.89 4283.31 2.77 5.80 16.04 33.57 28.35 59.33 47.78
RL-d 17.79 3239.52 2.14 6.06 11.07 31.34 21.28 60.25 35.32

RLG-r 21.31 3820.13 2.49 5.80 14.55 33.89 25.31 58.96 42.93
RLG-d 16.29 2810.12 1.81 5.68 10.09 31.66 19.13 60.03 31.87

0.1 GA-r 12.89 536.24 0.36 90.00 - - - - 0.40
GA-d 10.45 437.29 0.29 82.86 - - - - 0.35
RL-r 33.81 5591.76 3.67 6.18 19.08 32.11 36.31 61.11 59.42
RL-d 22.35 3716.23 2.43 6.01 12.79 31.61 24.83 61.37 40.46

RLG-r 29.21 4857.68 3.20 6.06 16.93 32.06 32.24 61.05 52.81
RLG-d 19.89 3316.51 2.17 5.91 11.38 31.00 22.56 61.45 36.71

a #Actions is the number of actions taken from the initial state to the final state.
b #States is the number of all the visited states during inference.
c @Rendering is the time consumed to execute the rendering function G.
d @Image is the time consumed to draw images for value network.
e @Network is the time consumed to calculate in the value network.

mainly is comprised of 3 parts: @Rendering, @Image,
@Network, standing for the time consumed to execute the
rendering function G, draw images for value network, and
calculate in the value network. We also record the number of
actions taken from the initial state to the final state, and the
number of all the visited states during inference.

Since there is no @Image and @Network, the cost of
executing GA depends mostly on @Rendering. Besides,
comparing with RL and RLG, GA take less actions which
means it visit less states and execute less rendering function
G. Therefore, GA costs much less inference time than RL
and RLG on average, which reveals that RL and RLG can
only handle offline tasks and cannot response in real time.

Table 5 shows that @Rendering of RL and RLG is only
about 6% of their inference time. Because each state needs
to evaluate the success value, RL and RLG spend a lot of
time on drawing the input images and calculating in the
value network. They approximately take up 32% and 60% of
the inference time, respectively. With the same initialization,
RLG takes fewer action steps than RL and their times of
each step are almost the same. Therefore, with the same
initialization, RLG spends less time than RL on restoring the
styling of a table. It is interesting to see that RLG is more
efficient than RL while RLG achieves better success rate.

Tradeoff between the success rate and inference time.
We evaluate the test set by using RLG-d with α = 0.3 in
different number of simulations K for MCTS. Table 6 shows
the result. As K increases, both success rate and inference
time increase. Specifically, as K increases, the number of
visited states increases; the inference time is approximately
linear to the number of visited states; the success rate is

approximately sub-linear to the number of visited states. It is
also interesting to see that more simulations tend to restore
the styling with fewer number of taken actions.

Table 6 The result of RLG with α = 0.3 in different K on test set.

K #Actions #States Inference time/s Success rate/%

10 21.31 733.18 8.79 72.55
20 19.41 1349.27 15.89 77.95
30 17.80 1842.76 21.44 81.30
40 16.65 2317.75 26.69 84.80
50 16.29 2810.12 31.87 87.65
60 16.04 3320.29 36.98 88.15
70 15.81 3822.43 42.85 88.50
80 15.57 4303.17 48.41 88.95
90 15.34 4766.23 53.48 89.10

5.4 Case Studies and Real-world Deployment

Fig. 8 shows the results of each method on an example table.
All the characters are converted to black blocks for easy
reading, and each green box shows the ground truth position
of the text inside each cell. Fig. 8(a) is the table with the
randomly initialized styling information. And the following
three figures show the tables with the restored styling
settings from the methods of GA, RL, and RLG.
Additionally, the red text in a cell or beside a vertical line
records the action applied onto it and the action sequence.
For example, “1-CA” in Fig. 8(b) means that it is the first
step in this adjustment process and it sets the text alignment
of this cell as CA, while “2-R" means that in this second
move it moves the line to the right. As we can see in
Fig. 8(b), GA moves the second right-most vertical line to
the right, which causes that all the other lines move to the
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right. Finally, the texts in second left-most column fail to
meet the ground truth positions, and the restoration fails. By
contrast, RL and RLG take more actions, but they bypass the
local optimum and restore the styling successfully.

(a) The table with randomly initialized styling.

(b) The table with the restored styling by GA.

(c) The table with the restored styling by RL.

(d) The table with the restored styling by RLG.

Fig. 8 The tables with the styling settings from different methods.

For displaying more complex cases, we also make the
videos3) to show how the reinforcement and greedy methods
adjust the styling settings step by step. They reveal that the
greedy method often reach the local optimum while the
reinforcement method learns the ability to make the
restoration successful.

It is worth mentioning that the proposed model has been
deployed into a PDF parser to support cross-format table
display. This tool can extract the tables from PDF files.
Fig. 9(a) shows the snapshot of a PDF page, where the table
region and table structure are recognized in a predecessor
step, while Fig. 9(b) shows the table rendered with the
restored styling. In this tool, users can also copy the LaTex
code of the extracted table. Note that the results from the
reinforcement models are shown only for public disclosure
documents after we process them in advance.

(a) The snapshot of the PDF parser.

(b) The table rendered with the restored styling by the PDF
parser.

Fig. 9 The PDF parser for open access.

6 Conclusion

In this paper, we formulate the problem of table styling
restoration, which is useful in the scenarios that we need to
interactively edit the table content in different platforms and
formats. Since there are no styling information but only
ground truth positions of cells, we propose an improved
reinforcement learning algorithm. We show that our best
reinforcement method successfully restores the stylings in
87.65% of the tables, with 25.75% absolute improvement
over the greedy method. We also discuss the tradeoff

between the inference time and restoration success rate, and
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argue that although the reinforcement methods cannot be
used in real-time scenarios, it is suitable for the offline tasks
with high-quality requirement. In the future, we will extend
our solution to restore the styling information of the whole
page area, not just in the table area. And we will consider
more types of the styling settings.
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